2016, 13(2): 333-341. doi: 10.3934/mbe.2015005

Directional entropy based model for diffusivity-driven tumor growth

1. 

Robotic Systems Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland

2. 

Department of Mechanical Engineering, Engineering College of Sorocaba (FACENS), São Paulo, 18087-125, Brazil

Received  June 2015 Revised  October 2015 Published  November 2015

In this work, we present and investigate a multiscale model to simulate 3D growth of glioblastomas (GBMs) that incorporates features of the tumor microenvironment and derives macroscopic growth laws from microscopic tissue structure information. We propose a normalized version of the Shannon entropy as an alternative measure of the directional anisotropy for an estimation of the diffusivity tensor in cases where the latter is unknown. In our formulation, the tumor aggressiveness and morphological behavior is tissue-type dependent, i.e. alterations in white and gray matter regions (which can e.g. be induced by normal aging in healthy individuals or neurodegenerative diseases) affect both tumor growth rates and their morphology. The feasibility of this new conceptual approach is supported by previous observations that the fractal dimension, which correlates with the Shannon entropy we calculate, is a quantitative parameter that characterizes the variability of brain tissue, thus, justifying the further evaluation of this new conceptual approach.
Citation: Marcelo E. de Oliveira, Luiz M. G. Neto. Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences & Engineering, 2016, 13 (2) : 333-341. doi: 10.3934/mbe.2015005
References:
[1]

Physica A: Statistical Mechanics and its Applications, 387 (2008), 839-850. doi: 10.1016/j.physa.2007.10.036.  Google Scholar

[2]

Pattern Recognition, 36 (2003), 2945-2954. doi: 10.1016/S0031-3203(03)00176-6.  Google Scholar

[3]

Physica A: Statistical Mechanics and its Applications, 365 (2006), 473-480. doi: 10.1016/j.physa.2005.09.063.  Google Scholar

[4]

O. Clatz, M. Sermesant, P. yves Bondiau, H. Delingette, S. K. Warfield, G. Mal and N. Ayache, Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect,, IEEE Transactions on Medical Imaging, (): 1334.   Google Scholar

[5]

Physica A: Statistical Mechanics and its Applications, 371 (2006), 76-79. doi: 10.1016/j.physa.2006.04.082.  Google Scholar

[6]

NeuroImage, 36 (2007), 543-549. doi: 10.1016/j.neuroimage.2007.03.057.  Google Scholar

[7]

Journal of the Neurological Sciences, 282 (2009), 67-71. doi: 10.1016/j.jns.2008.12.023.  Google Scholar

[8]

Methods San Diego Calif, 24 (2001), 309-321. Google Scholar

[9]

Neurosurgery, 39 (1996), 235-250; discussion 250-252. doi: 10.1097/00006123-199608000-00001.  Google Scholar

[10]

Medical Image Computing and Computer-Assisted Intervention, 4791 (2007), 642-650. doi: 10.1007/978-3-540-75757-3_78.  Google Scholar

[11]

Journal of Mathematical Biology, 56 (2008), 793-825. doi: 10.1007/s00285-007-0139-x.  Google Scholar

[12]

Physica A: Statistical Mechanics and its Applications, 392 (2013), 6616-6623. doi: 10.1016/j.physa.2013.08.010.  Google Scholar

[13]

Journal of theoretical biology, 203 (2000), 367-382. doi: 10.1006/jtbi.2000.2000.  Google Scholar

[14]

NeuroImage, 53 (2010), 471-479. doi: 10.1016/j.neuroimage.2010.06.050.  Google Scholar

[15]

Communications on Pure and Applied Mathematics, 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.  Google Scholar

[16]

W. H. Freeman, 1982.  Google Scholar

[17]

Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[18]

Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 6 (2005), 5798-5801. doi: 10.1109/IEMBS.2005.1615806.  Google Scholar

[19]

Journal of neuropathology and experimental neurology, 64 (2005), 479-489. Google Scholar

[20]

Physica A: Statistical Mechanics and its Applications, 388 (2009), 1303-1314. doi: 10.1016/j.physa.2008.11.038.  Google Scholar

[21]

University of Illinois Press, 1949.  Google Scholar

[22]

AJNR. American journal of neuroradiology, 23 (2002), 520-7. Google Scholar

[23]

Studies In Health Technology And Informatics, 79 (2000), 255-274. Google Scholar

[24]

Journal of the Neurological Sciences, 225 (2004), 33-37. doi: 10.1016/j.jns.2004.06.016.  Google Scholar

[25]

Cell Proliferation, 29 (1996), 269-288. doi: 10.1111/j.1365-2184.1996.tb01580.x.  Google Scholar

show all references

References:
[1]

Physica A: Statistical Mechanics and its Applications, 387 (2008), 839-850. doi: 10.1016/j.physa.2007.10.036.  Google Scholar

[2]

Pattern Recognition, 36 (2003), 2945-2954. doi: 10.1016/S0031-3203(03)00176-6.  Google Scholar

[3]

Physica A: Statistical Mechanics and its Applications, 365 (2006), 473-480. doi: 10.1016/j.physa.2005.09.063.  Google Scholar

[4]

O. Clatz, M. Sermesant, P. yves Bondiau, H. Delingette, S. K. Warfield, G. Mal and N. Ayache, Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect,, IEEE Transactions on Medical Imaging, (): 1334.   Google Scholar

[5]

Physica A: Statistical Mechanics and its Applications, 371 (2006), 76-79. doi: 10.1016/j.physa.2006.04.082.  Google Scholar

[6]

NeuroImage, 36 (2007), 543-549. doi: 10.1016/j.neuroimage.2007.03.057.  Google Scholar

[7]

Journal of the Neurological Sciences, 282 (2009), 67-71. doi: 10.1016/j.jns.2008.12.023.  Google Scholar

[8]

Methods San Diego Calif, 24 (2001), 309-321. Google Scholar

[9]

Neurosurgery, 39 (1996), 235-250; discussion 250-252. doi: 10.1097/00006123-199608000-00001.  Google Scholar

[10]

Medical Image Computing and Computer-Assisted Intervention, 4791 (2007), 642-650. doi: 10.1007/978-3-540-75757-3_78.  Google Scholar

[11]

Journal of Mathematical Biology, 56 (2008), 793-825. doi: 10.1007/s00285-007-0139-x.  Google Scholar

[12]

Physica A: Statistical Mechanics and its Applications, 392 (2013), 6616-6623. doi: 10.1016/j.physa.2013.08.010.  Google Scholar

[13]

Journal of theoretical biology, 203 (2000), 367-382. doi: 10.1006/jtbi.2000.2000.  Google Scholar

[14]

NeuroImage, 53 (2010), 471-479. doi: 10.1016/j.neuroimage.2010.06.050.  Google Scholar

[15]

Communications on Pure and Applied Mathematics, 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.  Google Scholar

[16]

W. H. Freeman, 1982.  Google Scholar

[17]

Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[18]

Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 6 (2005), 5798-5801. doi: 10.1109/IEMBS.2005.1615806.  Google Scholar

[19]

Journal of neuropathology and experimental neurology, 64 (2005), 479-489. Google Scholar

[20]

Physica A: Statistical Mechanics and its Applications, 388 (2009), 1303-1314. doi: 10.1016/j.physa.2008.11.038.  Google Scholar

[21]

University of Illinois Press, 1949.  Google Scholar

[22]

AJNR. American journal of neuroradiology, 23 (2002), 520-7. Google Scholar

[23]

Studies In Health Technology And Informatics, 79 (2000), 255-274. Google Scholar

[24]

Journal of the Neurological Sciences, 225 (2004), 33-37. doi: 10.1016/j.jns.2004.06.016.  Google Scholar

[25]

Cell Proliferation, 29 (1996), 269-288. doi: 10.1111/j.1365-2184.1996.tb01580.x.  Google Scholar

[1]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[2]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[3]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[4]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[5]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[6]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[7]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[8]

Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079

[11]

Manuel Fernández-Martínez. Theoretical properties of fractal dimensions for fractal structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1113-1128. doi: 10.3934/dcdss.2015.8.1113

[12]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[13]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[14]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[15]

Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020421

[16]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[17]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[18]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[19]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[20]

Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems & Imaging, 2020, 14 (5) : 797-818. doi: 10.3934/ipi.2020037

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]