Citation: |
[1] |
A. Abdelrazec, S. Lenhart and H. Zhu, Transmission dynamics of west nile virus in mosquitoes and corvids and non-corvids, Journal of mathematical biology, 68 (2014), 1553-1582.doi: 10.1007/s00285-013-0677-3. |
[2] |
L. Arriola and J. M. Hyman, Sensitivity analysis for uncertainty quantification in mathematical models, in Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, 2009, 195-247.doi: 10.1007/978-90-481-2313-1_10. |
[3] |
L. M. Arriola and J. M. Hyman, Being sensitive to uncertainty, Computing in Science & Engineering, 9 (2007), 10-20.doi: 10.1109/MCSE.2007.27. |
[4] |
T. A. Beveroth, M. P. Ward, R. L. Lampman, A. M. Ringia and R. J. Novak, Changes in seroprevalence of west nile virus across illinois in free-ranging birds from 2001 through 2004, The American journal of tropical medicine and hygiene, 74 (2006), 174-179. |
[5] |
D. B. Botkin and R. S. Miller, Mortality rates and survival of birds, American Naturalist, 108 (1974), 181-192.doi: 10.1086/282898. |
[6] |
C. Bowman, A. Gumel, P. Van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against west nile virus, Bulletin of mathematical biology, 67 (2005), 1107-1133.doi: 10.1016/j.bulm.2005.01.002. |
[7] |
C. A. Bradley, S. E. J. Gibbs and S. Altizer, Urban land use predicts west nile virus exposure in songbirds, Ecological Applications, 18 (2008), 1083-1092.doi: 10.1890/07-0822.1. |
[8] |
S. Chatterjee, S. Pal and J. Chattopadhyay, Role of migratory birds under environmental fluctuation: a mathematical study, Journal of Biological Systems, 16 (2008), 81-106.doi: 10.1142/S0218339008002423. |
[9] |
N. Chitnis, J. Cushing and J. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, 67 (2006), 24-45.doi: 10.1137/050638941. |
[10] |
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of mathematical biology, 70 (2008), 1272-1296.doi: 10.1007/s11538-008-9299-0. |
[11] |
N. Chitnis, J. M. Hyman and C. A. Manore, Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever, Journal of Biological Dynamics, 7 (2013), 11-40.doi: 10.1080/17513758.2012.733427. |
[12] |
D. Chowell-Puente, P. Delgado, D. Pérez, C. H. S. Tapia, F. Sánchez and D. Murillo, The Impact of Mosquito-Bird Interaction on the Spread of West Nile Virus to Human Populations, Department of Biometrics, Cornell University, Technical Report Series. |
[13] |
L. Colton, B. J. Biggerstaff, A. Johnson and R. S. Nasci, Quantification of west nile virus in vector mosquito saliva, Journal of the American Mosquito Control Association, 21 (2005), 49-53. |
[14] |
G. Cruz-Pacheco, L. Esteva, J. Montaø-Hirose and C. Vargas, Modelling the dynamics of west nile virus, Bulletin of mathematical biology, 67 (2005), 1157-1172.doi: 10.1016/j.bulm.2004.11.008. |
[15] |
G. Cruz-Pacheco, L. Esteva and C. Vargas, Multi-species interactions in west nile virus infection, Journal of Biological Dynamics, 6 (2012), 281-298.doi: 10.1080/17513758.2011.571721. |
[16] |
G. Cruz-Pacheco, L. Esteva and C. Vargas, Seasonality and outbreaks in west nile virus infection, Bulletin of mathematical biology, 71 (2009), 1378-1393.doi: 10.1007/s11538-009-9406-x. |
[17] |
B. Durand, G. Balança, T. Baldet and V. Chevalier, A metapopulation model to simulate west nile virus circulation in western africa, southern europe and the mediterranean basin, Veterinary research, 41. |
[18] |
D. S. Farner, Age groups and longevity in the american robin: Comments, further discussion, and certain revisions, The Wilson Bulletin, 68-81. |
[19] |
C. for Disease Control and Prevention, Statistics, surveillance, and control archive, http://www.cdc.gov/ncidod/dvbid/westnile/surv&control_archive.htm, 2012. |
[20] |
C. for Disease Control and Prevention, West nile virus clinical description, http://www.cdc.gov/ncidod/dvbid/westnile/clinicians/, 2012. |
[21] |
C. for Disease Control and Prevention, West nile virus questions and answers, http://www.cdc.gov/ncidod/dvbid/westnile/qa/pesticides.htm, 2012. |
[22] |
L. B. Goddard, A. E. Roth, W. K. Reisen and T. W. Scott, Vertical transmission of west nile virus by three california culex (diptera: Culicidae) species, Journal of medical entomology, 40 (2003), 743-746.doi: 10.1603/0022-2585-40.6.743. |
[23] |
J. Heffernan, R. Smith and L. Wahl, Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface, 2 (2005), 281-293.doi: 10.1098/rsif.2005.0042. |
[24] |
A. M. Kilpatrick, A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra and P. Daszak, Predicting the global spread of h5n1 avian influenza, Proceedings of the National Academy of Sciences, 103 (2006), 19368-19373.doi: 10.1073/pnas.0609227103. |
[25] |
A. M. Kilpatrick, L. D. Kramer, M. J. Jones, P. P. Marra and P. Daszak, West nile virus epidemics in north america are driven by shifts in mosquito feeding behavior, PLoS Biol, 4 (2006), e82.doi: 10.1371/journal.pbio.0040082. |
[26] |
N. Komar, West nile virus: epidemiology and ecology in north america, Advances in virus research, 61 (2003), 185-234. |
[27] |
J. L. Kwan, S. Kluh and W. K. Reisen, Antecedent avian immunity limits tangential transmission of west nile virus to humans, PLoS ONE, 7 (2012), e34127.doi: 10.1371/journal.pone.0034127. |
[28] |
J. Mackenzie, D. Gubler and L. Petersen, Emerging flaviviruses: The spread and resurgence of japanese encephalitis, west nile and dengue viruses, Nature medicine, 10 (2004), S98-S109.doi: 10.1038/nm1144. |
[29] |
C. A. Manore, J. K. Davis, R. C. Christofferson, D. M. Wesson, J. M. Hyman and C. N. Mores, Towards an early warning system for forecasting human west nile virus incidence, PLoS currents, 6 2014.doi: 10.1371/currents.outbreaks.f0b3978230599a56830ce30cb9ce0500. |
[30] |
C. A. Manore, K. S. Hickmann, S. Xu, H. J. Wearing and J. M. Hyman, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, Journal of theoretical biology, 356 (2014), 174-191.doi: 10.1016/j.jtbi.2014.04.033. |
[31] |
R. G. McLean, S. R. Ubico, D. E. Docherty, W. R. Hansen, L. Sileo and T. S. McNamara, West nile virus transmission and ecology in birds, Annals of the New York Academy of Sciences, 951 (2001), 54-57.doi: 10.1111/j.1749-6632.2001.tb02684.x. |
[32] |
S. Moore, C. Manore, V. Bokil, E. Borer and P. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition, Bulletin of Mathematical Biology, 73 (2011), 2707-2730.doi: 10.1007/s11538-011-9654-4. |
[33] |
F. Morneau, C. Lépine, R. Décarie, M.-A. Villard and J.-L. DesGranges, Reproduction of american robin (turdus migratorius) in a suburban environment, Landscape and urban planning, 32 (1995), 55-62. |
[34] |
A. T. Peterson, D. A. Vieglais and J. K. Andreasen, Migratory birds modeled as critical transport agents for west nile virus in north america, Vector-Borne and Zoonotic Diseases, 3 (2003), 27-37.doi: 10.1089/153036603765627433. |
[35] |
Z. Qiu, Dynamics of an epidemic model with host migration, Applied Mathematics and Computation, 218 (2011), 4614-4625.doi: 10.1016/j.amc.2011.10.045. |
[36] |
W. K. Reisen, Y. Fang, H. D. Lothrop, V. M. Martinez, J. Wilson, P. O'Connor, R. Carney, B. Cahoon-Young, M. Shafii and A. C. Brault, Overwintering of west nile virus in southern california, Journal of medical entomology, 43 (2006), 344-355.doi: 10.1093/jmedent/43.2.344. |
[37] |
W. K. Reisen, M. M. Milby and R. P. Meyer, Population dynamics of adult culex mosquitoes (diptera: Culicidae) along the kern river, kern county, california, in 1990, Journal of medical entomology, 29 (1992), 531-543.doi: 10.1093/jmedent/29.3.531. |
[38] |
R. Rosà, G. Marini, L. Bolzoni, M. Neteler, M. Metz, L. Delucchi, E. A. Chadwick, L. Balbo, A. Mosca, M. Giacobini et al., Early warning of west nile virus mosquito vector: Climate and land use models successfully explain phenology and abundance of culex pipiens mosquitoes in north-western italy, Parasites & vectors, 7 (2014), p269. |
[39] |
M. R. Sardelis, M. J. Turell, D. J. Dohm and M. L. O'Guinn, Vector competence of selected north american culex and coquillettidia mosquitoes for west nile virus, Emerging infectious diseases, 7 (2001), p1018. |
[40] |
J. E. Simpson, P. J. Hurtado, J. Medlock, G. Molaei, T. G. Andreadis, A. P. Galvani and M. A. Diuk-Wasser, Vector host-feeding preferences drive transmission of multi-host pathogens: West nile virus as a model system, Proceedings of the Royal Society B: Biological Sciences, 279 (2012), 925-933.doi: 10.1098/rspb.2011.1282. |
[41] |
J. P. Swaddle and S. E. Calos, Increased avian diversity is associated with lower incidence of human west nile infection: Observation of the dilution effect, PloS one, 3 (2008), e2488.doi: 10.1371/journal.pone.0002488. |
[42] |
D. Thomas and B. Urena, A model describing the evolution of west nile-like encephalitis in new york city, Mathematical and computer modelling, 34 (2001), 771-781.doi: 10.1016/S0895-7177(01)00098-X. |
[43] |
S. Tiawsirisup, K. B. Platt, R. B. Evans and W. A. Rowley, Susceptibility of ochlerotatus trivittatus (coq.), aedes albopictus (skuse), and culex pipiens (l.) to west nile virus infection, Vector-Borne & Zoonotic Diseases, 4 (2004), 190-197. |
[44] |
S. Tiawsirisup, K. B. Platt, R. B. Evans and W. A. Rowley, A comparision of west nile virus transmission by ochlerotatus trivittatus (coq.), culex pipiens (l.), and aedes albopictus (skuse), Vector-Borne & Zoonotic Diseases, 5 (2005), 40-47. |
[45] |
M. J. Turell, M. R. Sardelis, D. J. Dohm and M. L. O'Guinn, Potential for north american mosquitoes to transmit west nile virus, American Journal of Tropical Medicine and Hygiene, 62 (2000), 413-414. |
[46] |
R. Unnasch, T. Sprenger, C. Katholi, E. Cupp, G. Hill and T. Unnasch, A dynamic transmission model of eastern equine encephalitis virus, Ecological modelling, 192 (2006), 425-440.doi: 10.1016/j.ecolmodel.2005.07.011. |
[47] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[48] |
E. B. Vinogradova, Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control, Pensoft Publishers, 2000. |
[49] |
T. P. Weber and N. I. Stilianakis, Ecologic immunology of avian influenza (h5n1) in migratory birds, Emerging infectious diseases, 13 (2007), p1139.doi: 10.3201/eid1308.070319. |
[50] |
M. J. Wonham, M. A. Lewis, J. Rencławowicz and P. Van den Driessche, Transmission assumptions generate conflicting predictions in host-vector disease models: A case study in west nile virus, Ecology Letters, 9 (2006), 706-725.doi: 10.1111/j.1461-0248.2006.00912.x. |
[51] |
M. Wonham, T. de Camino-Beck and M. Lewis, An epidemiological model for west nile virus: Invasion analysis and control applications, Proceedings of the Royal Society of London. Series B: Biological Sciences, 271 (2004), 501-507.doi: 10.1098/rspb.2003.2608. |