-
Previous Article
Modelling HIV superinfection among men who have sex with men
- MBE Home
- This Issue
-
Next Article
A delayed HIV-1 model with virus waning term
The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy
1. | National Brain Research Centre, Manesar, Gurgaon, Haryana-122051, India, India |
References:
[1] |
E. Budiarto, M. Keijzer, P. R. M. Storchi, A. W. Heemink, S. Breedveld and B. J. M. Heijmen, Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target, Phys. Med. Biol., 59 (2014), 289-310.
doi: 10.1088/0031-9155/59/2/289. |
[2] |
J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, Br. J. Radiol., 62 (1989), 679-694.
doi: 10.1259/0007-1285-62-740-679. |
[3] |
L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic Resonance: A remarkable idea that changed our perception of noise, Eur. Phys. J. B, 69 (2009), 1-3.
doi: 10.1140/epjb/e2009-00163-x. |
[4] |
A. Godley, E. Ahunbay, C. Peng and X. A. Li, Accumulating daily-varied dose distributions of prostate radiation therapy with soft-tissue-based kV CT guidance, J. Appl. Clin. Med. Phys., 13 (2012), 1-3. |
[5] |
M. Guerrero and M. Carlone, Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources, Med. Phys., 37 (2010), 4173-4181. |
[6] |
W. Horsthemke and R. Lefever, Noise-Induced Transitions in Physics, Chemistry, and Biology, $2^{nd}$ edition, Springer, Berlin, 2006. |
[7] |
B. Huang, W. Wang, M. Bates and X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science, 319 (2008), 810-813.
doi: 10.1126/science.1153529. |
[8] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175-193.
doi: 10.1007/BF02418571. |
[9] |
M. C. Joiner and A. Kogel, Basic Clinical Radiobiology, $4^{th}$ edition, CRC Press, Boca Raton, 2009. |
[10] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, $1^{st}$ edition, Springer, London, 1992.
doi: 10.1007/978-3-662-12616-5. |
[11] |
D. E. Lea, Actions of Radiations on Living Cells, $2^{nd}$ edition, Cambridge University Press, New York, 1962. |
[12] |
G. Murphy, W. Lawrence and R. Lenard, ACS Textbook of Clinical Oncology, $2^{nd}$ edition, The American Cancer Society, Inc., Atlanta, 1995. |
[13] |
T. Needham, A visual explanation of Jensen's inequality, Amer. Math. Monthly, 100 (1993), 768-771.
doi: 10.2307/2324783. |
[14] |
J. J. Ruel and M. P. Ayres, Jensen's inequality predicts effects of environmental variation, Trends Ecol. Evol., 14 (1999), 361-366.
doi: 10.1016/S0169-5347(99)01664-X. |
[15] |
F. C. Su, C. Shi, P. Mavroidis, P. R. Szegedi and N. Papanikolaou, Evaluation on lung cancer patients' adaptive planning of TomoTherapy utilising radiobiological measures and planned adaptive module, J. Radiother. Pract., 8 (2009), 185-194.
doi: 10.1017/S1460396909990240. |
[16] |
E. Ullner, J. Buceta, A. Díez-Noguera and J. García-Ojalvo, Noise-induced coherence in multicellular circadian clocks, Biophys. J., 96 (2009), 3573-3581.
doi: 10.1016/j.bpj.2009.02.031. |
[17] |
D. Yan, F. Vicini, J. Wong and A. Martinez, Adaptive radiation therapy, Phys. Med. Biol., 42 (1997), 123-132.
doi: 10.1088/0031-9155/42/1/008. |
[18] |
E. C. Zimmermann and J. Ross, Light induced bistability in $S_2 0_6 F_2$ ⇌ $2S0_3 F$: Theory and experiment, J. Chem. Phys., 80 (1984), 720-729. |
show all references
References:
[1] |
E. Budiarto, M. Keijzer, P. R. M. Storchi, A. W. Heemink, S. Breedveld and B. J. M. Heijmen, Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target, Phys. Med. Biol., 59 (2014), 289-310.
doi: 10.1088/0031-9155/59/2/289. |
[2] |
J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, Br. J. Radiol., 62 (1989), 679-694.
doi: 10.1259/0007-1285-62-740-679. |
[3] |
L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic Resonance: A remarkable idea that changed our perception of noise, Eur. Phys. J. B, 69 (2009), 1-3.
doi: 10.1140/epjb/e2009-00163-x. |
[4] |
A. Godley, E. Ahunbay, C. Peng and X. A. Li, Accumulating daily-varied dose distributions of prostate radiation therapy with soft-tissue-based kV CT guidance, J. Appl. Clin. Med. Phys., 13 (2012), 1-3. |
[5] |
M. Guerrero and M. Carlone, Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources, Med. Phys., 37 (2010), 4173-4181. |
[6] |
W. Horsthemke and R. Lefever, Noise-Induced Transitions in Physics, Chemistry, and Biology, $2^{nd}$ edition, Springer, Berlin, 2006. |
[7] |
B. Huang, W. Wang, M. Bates and X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science, 319 (2008), 810-813.
doi: 10.1126/science.1153529. |
[8] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175-193.
doi: 10.1007/BF02418571. |
[9] |
M. C. Joiner and A. Kogel, Basic Clinical Radiobiology, $4^{th}$ edition, CRC Press, Boca Raton, 2009. |
[10] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, $1^{st}$ edition, Springer, London, 1992.
doi: 10.1007/978-3-662-12616-5. |
[11] |
D. E. Lea, Actions of Radiations on Living Cells, $2^{nd}$ edition, Cambridge University Press, New York, 1962. |
[12] |
G. Murphy, W. Lawrence and R. Lenard, ACS Textbook of Clinical Oncology, $2^{nd}$ edition, The American Cancer Society, Inc., Atlanta, 1995. |
[13] |
T. Needham, A visual explanation of Jensen's inequality, Amer. Math. Monthly, 100 (1993), 768-771.
doi: 10.2307/2324783. |
[14] |
J. J. Ruel and M. P. Ayres, Jensen's inequality predicts effects of environmental variation, Trends Ecol. Evol., 14 (1999), 361-366.
doi: 10.1016/S0169-5347(99)01664-X. |
[15] |
F. C. Su, C. Shi, P. Mavroidis, P. R. Szegedi and N. Papanikolaou, Evaluation on lung cancer patients' adaptive planning of TomoTherapy utilising radiobiological measures and planned adaptive module, J. Radiother. Pract., 8 (2009), 185-194.
doi: 10.1017/S1460396909990240. |
[16] |
E. Ullner, J. Buceta, A. Díez-Noguera and J. García-Ojalvo, Noise-induced coherence in multicellular circadian clocks, Biophys. J., 96 (2009), 3573-3581.
doi: 10.1016/j.bpj.2009.02.031. |
[17] |
D. Yan, F. Vicini, J. Wong and A. Martinez, Adaptive radiation therapy, Phys. Med. Biol., 42 (1997), 123-132.
doi: 10.1088/0031-9155/42/1/008. |
[18] |
E. C. Zimmermann and J. Ross, Light induced bistability in $S_2 0_6 F_2$ ⇌ $2S0_3 F$: Theory and experiment, J. Chem. Phys., 80 (1984), 720-729. |
[1] |
S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279 |
[2] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[3] |
Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119 |
[4] |
J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485 |
[5] |
Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485 |
[6] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[7] |
Ying-Cheng Lai, Kwangho Park. Noise-sensitive measure for stochastic resonance in biological oscillators. Mathematical Biosciences & Engineering, 2006, 3 (4) : 583-602. doi: 10.3934/mbe.2006.3.583 |
[8] |
Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060 |
[9] |
Fok Ricky, Lasek Agnieszka, Li Jiye, An Aijun. Modeling daily guest count prediction. Big Data & Information Analytics, 2016, 1 (4) : 299-308. doi: 10.3934/bdia.2016012 |
[10] |
Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545 |
[11] |
Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61 |
[12] |
Pierdomenico Pepe. A nonlinear version of Halanay's inequality for the uniform convergence to the origin. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021045 |
[13] |
Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049 |
[14] |
Christopher M. Kribs-Zaleta, Melanie Lee, Christine Román, Shari Wiley, Carlos M. Hernández-Suárez. The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers. Mathematical Biosciences & Engineering, 2005, 2 (4) : 771-788. doi: 10.3934/mbe.2005.2.771 |
[15] |
Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095 |
[16] |
Xiaoyuan Chang, Junping Shi. Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4551-4572. doi: 10.3934/dcdsb.2021242 |
[17] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[18] |
Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645 |
[19] |
Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114 |
[20] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]