Citation: |
[1] |
F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349.doi: 10.3934/mbe.2013.10.1335. |
[2] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988. |
[3] |
G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.doi: 10.1137/110826588. |
[4] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.doi: 10.1080/00036810903208122. |
[5] |
C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.doi: 10.3934/mbe.2012.9.819. |
[6] |
H. L. Smith, Mathematics in Population Biology, Princeton University Press, 2003. |
[7] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, RI, 2011. |
[8] |
J. A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York and London, 1980. |
[9] |
J. Wang, R. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, J. Biol. Dyna., 9 (2015), 73-101.doi: 10.1080/17513758.2015.1006696. |
[10] |
J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Diff. Equ., 2015 (2015), 1-19. |
[11] |
J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289-313.doi: 10.1016/j.jmaa.2015.06.040. |
[12] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York and Basel, 1985. |
[13] |
J. Yang, Z. Qiu and X. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng., 11 (2014), 641-665.doi: 10.3934/mbe.2014.11.641. |