\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on dynamics of an age-of-infection cholera model

Abstract Related Papers Cited by
  • A recent paper [F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10, 2013, 1335--1349.] presented a model for the dynamics of cholera transmission. The model is incorporated with both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is proved to be a sharp threshold determining whether or not cholera dies out. The global stability for disease-free equilibrium and endemic equilibrium is proved by constructing suitable Lyapunov functionals. However, for the proof of the global stability of endemic equilibrium, we have to show first the relative compactness of the orbit generated by model in order to make use of the invariance principle. Furthermore, uniform persistence of system must be shown since the Lyapunov functional is possible to be infinite if $i(a, t)/i^* (a) =0$ on some age interval. In this note, we give a supplement to above paper with necessary mathematical arguments.
    Mathematics Subject Classification: Primary: 92D30, 92B05; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349.doi: 10.3934/mbe.2013.10.1335.

    [2]

    J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988.

    [3]

    G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.doi: 10.1137/110826588.

    [4]

    P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.doi: 10.1080/00036810903208122.

    [5]

    C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.doi: 10.3934/mbe.2012.9.819.

    [6]

    H. L. Smith, Mathematics in Population Biology, Princeton University Press, 2003.

    [7]

    H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, RI, 2011.

    [8]

    J. A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York and London, 1980.

    [9]

    J. Wang, R. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, J. Biol. Dyna., 9 (2015), 73-101.doi: 10.1080/17513758.2015.1006696.

    [10]

    J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Diff. Equ., 2015 (2015), 1-19.

    [11]

    J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289-313.doi: 10.1016/j.jmaa.2015.06.040.

    [12]

    G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York and Basel, 1985.

    [13]

    J. Yang, Z. Qiu and X. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng., 11 (2014), 641-665.doi: 10.3934/mbe.2014.11.641.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return