-
Previous Article
A leaky integrate-and-fire model with adaptation for the generation of a spike train
- MBE Home
- This Issue
-
Next Article
Preface
The effect of positive interspike interval correlations on neuronal information transmission
1. | Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany, Germany |
References:
[1] |
L. F. Abbott and W. G. Regehr, Synaptic computation, Nature, 431 (2004), 796-803.
doi: 10.1038/nature03010. |
[2] |
R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, Proc. Nat. Acad. Sci., 97 (2000), 8110-8115. |
[3] |
D. Bernardi and B. Lindner, A frequency-resolved mutual information rate and its application to neural systems, J. Neurophysiol., 113 (2014), 1342-1357.
doi: 10.1152/jn.00354.2014. |
[4] |
S. Blankenburg, W. Wu, B. Lindner and S. Schreiber, Information filtering in resonant neurons, J. Comput. Neurosci., 39 (2015), 349-370. |
[5] |
A. Borst and F. Theunissen, Information theory and neural coding, Nat. Neurosci., 2 (1999), 947-957.
doi: 10.1038/14731. |
[6] |
N. Brenner, O. Agam, W. Bialek and R. de Ruyter van Steveninck, Statistical properties of spike trains: Universal and stimulus-dependent aspects, Phys. Rev. E, 66 (2002), 031907, 14pp.
doi: 10.1103/PhysRevE.66.031907. |
[7] |
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer, 2009. |
[8] |
N. Brunel, V. Hakim and M. J. E. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance, Phys. Rev. E, 67 (2003), 051916, 23pp.
doi: 10.1103/PhysRevE.67.051916. |
[9] |
M. Chacron, B. Lindner and A. Longtin, Threshold fatigue and information transfer, J. Comput. Neurosci., 23 (2007), 301-311.
doi: 10.1007/s10827-007-0033-y. |
[10] |
M. J. Chacron, A. Longtin and L. Maler, Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli, J. Neurosci., 21 (2001), 5328-5343. |
[11] |
M. J. Chacron, B. Doiron, L. Maler, A. Longtin and J. Bastian, Non-classical receptive field mediates switch in a sensory neuron's frequency tuning, Nature, 423 (2003), 77-81. |
[12] |
M. J. Chacron, B. Lindner and A. Longtin, Noise shaping by interval correlations increases information transfer, Phys. Rev. Lett., 93 (2004), 059904. |
[13] |
T. Cover and J. Thomas, Elements of Information Theory, Wiley, New-York, 1991.
doi: 10.1002/0471200611. |
[14] |
D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events, Chapman and Hall, London, 1966. |
[15] |
F. Droste, T. Schwalger and B. Lindner, Interplay of two signals in a neuron with short-term synaptic plasticity, Front. Comp. Neurosci., 7 (2013), p86.
doi: 10.3389/fncom.2013.00086. |
[16] |
T. A. Engel, L. Schimansky-Geier, A. V. M. Herz, S. Schreiber and I. Erchova, Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex, J. Neurophysiol., 100 (2008), 1576-1589.
doi: 10.1152/jn.01282.2007. |
[17] |
K. Fisch, T. Schwalger, B. Lindner, A. Herz and J. Benda, Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron, J. Neurosci., 32 (2012), 17332-17344.
doi: 10.1523/JNEUROSCI.6231-11.2012. |
[18] |
J. L. Folks and R. S. Chhikara, The inverse gaussian distribution and its statistical application-a review, J. R. Statist. Soc. B, 40 (1978), 263-289. |
[19] |
F. Gabbiani, Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons, Network Comp. Neural., 7 (1996), 61-85. |
[20] |
C. D. Geisler and J. M. Goldberg, A stochastic model of repetitive activity of neurons, Biophys. J., 6 (1966), 53-69. |
[21] |
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron, Biophys. J., 4 (1964), 41-68. |
[22] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511815706. |
[23] |
J. D. Hamilton, Time Series Analysis, Princeton University Press, 1994. |
[24] |
A. V. Holden, Models of the Stochastic Activity of Neurones, Springer-Verlag, Berlin, 1976. |
[25] |
E. M. Izhikevich, Resonate-and-fire neurons, Neural. Netw., 14 (2001), 883-894. |
[26] |
B. Lindner, Interspike interval statistics of neurons driven by colored noise, Phys. Rev. E, 69 (2004), 022901. |
[27] |
B. Lindner, Low-pass filtering of information in the leaky integrate-and-fire neuron driven by white noise, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (eds. I. Visarath, A. Palacios and P. Longhini), Springer, 2012. |
[28] |
B. Lindner, M. J. Chacron, A. Longtin, Integrate-and-fire neurons with threshold noise - a tractable model of how interspike interval correlations affect neuronal signal transmission, Phys. Rev. E, 72 (2005), p021911, 21pp.
doi: 10.1103/PhysRevE.72.021911. |
[29] |
B. Lindner, D. Gangloff, A. Longtin and J. E. Lewis, Broadband coding with dynamic synapses, J. Neurosci., 29 (2009), 2076-2087.
doi: 10.1523/JNEUROSCI.3702-08.2009. |
[30] |
S. B. Lowen and M. C. Teich, Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales, J. Acoust. Soc. Am., 92 (1992), 803-806. |
[31] |
D. J. Mar, C. C. Chow, W. Gerstner, R. W. Adams and J. J. Collins, Noise shaping in populations of coupled model neurons, Proc. Natl. Acad. Sci., 96 (1999), 10450-10455.
doi: 10.1073/pnas.96.18.10450. |
[32] |
G. Marsat and G. S. Pollack, Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron, J. Neurophysiol., 92 (2004), 939-948. |
[33] |
C. Massot, M. Chacron and K. Cullen, Information transmission and detection thresholds in the vestibular nuclei: Single neurons vs. population encoding, J. Neurophysiol., 105 (2011), 1798-1814.
doi: 10.1152/jn.00910.2010. |
[34] |
M. Merkel and B. Lindner, Synaptic filtering of rate-coded information, Phys. Rev. E, 81 (2010), 041921, 19pp.
doi: 10.1103/PhysRevE.81.041921. |
[35] |
J. W. Middleton, A. Longtin, J. Benda and L. Maler, Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity, J. Neurophysiol., 101 (2009), 1160-1170.
doi: 10.1152/jn.90814.2008. |
[36] |
A. B. Neiman and D. F. Russell, Sensory coding in oscillatory electroreceptors of paddlefish, Chaos, 21 (2011), 047505.
doi: 10.1063/1.3669494. |
[37] |
A. Nikitin, N. Stocks and A. Bulsara, Enhancing the resolution of a sensor via negative correlation: A biologically inspired approach, Phys. Rev. Lett., 109 (2012), 238103. |
[38] |
A. M. M. Oswald, M. J. Chacron, B. Doiron, J. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes, J. Neurosci., 24 (2004), 4351-4362.
doi: 10.1523/JNEUROSCI.0459-04.2004. |
[39] |
S. A. Prescott and T. J. Sejnowski, Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms, J. Neurosci., 28 (2008), 13649-13661.
doi: 10.1523/JNEUROSCI.1792-08.2008. |
[40] |
F. Rieke, D. Bodnar and W. Bialek, Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents, Proc. Biol. Sci., 262 (1995), 259-265. |
[41] |
F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek, Spikes: Exploring the Neural Code, MIT Press, Cambridge, Massachusetts, 1999. |
[42] |
J. C. Roddey, B. Girish and J. P. Miller, Assessing the performance of neural encoding models in the presence of noise, J. Comput. Neurosci., 8 (2000), 95-112. |
[43] |
S. G. Sadeghi, M. J. Chacron, M. C. Taylor and K. E. Cullen, Neural variability, detection thresholds, and information transmission in the vestibular system, J. Neurosci., 27 (2007), 771-781. |
[44] |
T. Schwalger, K. Fisch, J. Benda and B. Lindner, How noisy adaptation of neurons shapes interspike interval histograms and correlations, PLoS Comp. Biol., 6 (2010), e1001026, 25pp.
doi: 10.1371/journal.pcbi.1001026. |
[45] |
R. Shannon, The mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[46] |
N. Sharafi, J. Benda and B. Lindner, Information filtering by synchronous spikes in a neural population, J. Comp. Neurosci., 34 (2013), 285-301.
doi: 10.1007/s10827-012-0421-9. |
[47] |
L. Shiau, T. Schwalger and B. Lindner, ISI correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation, J. Comp. Neurosci., 38 (2015), 589-600.
doi: 10.1007/s10827-015-0558-4. |
[48] |
J. Shin, The noise shaping neural coding hypothesis: A brief history and physiological implications, Neurocomp., 44 (2002), 167-175.
doi: 10.1016/S0925-2312(02)00379-X. |
[49] |
J. H. Shin, K. R. Lee and S. B. Park, Novel neural circuits based on stochastic pulse coding and noise feedback pulse coding, Int. J. Electronics, 74 (1993), 359-368.
doi: 10.1080/00207219308925840. |
[50] |
R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach, New York, 1967. |
[51] |
R. D. Vilela and B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation, Phys. Rev. E, 80 (2009), 031909.
doi: 10.1103/PhysRevE.80.031909. |
[52] |
R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Ann. Rev. Physiol., 64 (2002), 355-405. |
show all references
References:
[1] |
L. F. Abbott and W. G. Regehr, Synaptic computation, Nature, 431 (2004), 796-803.
doi: 10.1038/nature03010. |
[2] |
R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, Proc. Nat. Acad. Sci., 97 (2000), 8110-8115. |
[3] |
D. Bernardi and B. Lindner, A frequency-resolved mutual information rate and its application to neural systems, J. Neurophysiol., 113 (2014), 1342-1357.
doi: 10.1152/jn.00354.2014. |
[4] |
S. Blankenburg, W. Wu, B. Lindner and S. Schreiber, Information filtering in resonant neurons, J. Comput. Neurosci., 39 (2015), 349-370. |
[5] |
A. Borst and F. Theunissen, Information theory and neural coding, Nat. Neurosci., 2 (1999), 947-957.
doi: 10.1038/14731. |
[6] |
N. Brenner, O. Agam, W. Bialek and R. de Ruyter van Steveninck, Statistical properties of spike trains: Universal and stimulus-dependent aspects, Phys. Rev. E, 66 (2002), 031907, 14pp.
doi: 10.1103/PhysRevE.66.031907. |
[7] |
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer, 2009. |
[8] |
N. Brunel, V. Hakim and M. J. E. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance, Phys. Rev. E, 67 (2003), 051916, 23pp.
doi: 10.1103/PhysRevE.67.051916. |
[9] |
M. Chacron, B. Lindner and A. Longtin, Threshold fatigue and information transfer, J. Comput. Neurosci., 23 (2007), 301-311.
doi: 10.1007/s10827-007-0033-y. |
[10] |
M. J. Chacron, A. Longtin and L. Maler, Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli, J. Neurosci., 21 (2001), 5328-5343. |
[11] |
M. J. Chacron, B. Doiron, L. Maler, A. Longtin and J. Bastian, Non-classical receptive field mediates switch in a sensory neuron's frequency tuning, Nature, 423 (2003), 77-81. |
[12] |
M. J. Chacron, B. Lindner and A. Longtin, Noise shaping by interval correlations increases information transfer, Phys. Rev. Lett., 93 (2004), 059904. |
[13] |
T. Cover and J. Thomas, Elements of Information Theory, Wiley, New-York, 1991.
doi: 10.1002/0471200611. |
[14] |
D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events, Chapman and Hall, London, 1966. |
[15] |
F. Droste, T. Schwalger and B. Lindner, Interplay of two signals in a neuron with short-term synaptic plasticity, Front. Comp. Neurosci., 7 (2013), p86.
doi: 10.3389/fncom.2013.00086. |
[16] |
T. A. Engel, L. Schimansky-Geier, A. V. M. Herz, S. Schreiber and I. Erchova, Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex, J. Neurophysiol., 100 (2008), 1576-1589.
doi: 10.1152/jn.01282.2007. |
[17] |
K. Fisch, T. Schwalger, B. Lindner, A. Herz and J. Benda, Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron, J. Neurosci., 32 (2012), 17332-17344.
doi: 10.1523/JNEUROSCI.6231-11.2012. |
[18] |
J. L. Folks and R. S. Chhikara, The inverse gaussian distribution and its statistical application-a review, J. R. Statist. Soc. B, 40 (1978), 263-289. |
[19] |
F. Gabbiani, Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons, Network Comp. Neural., 7 (1996), 61-85. |
[20] |
C. D. Geisler and J. M. Goldberg, A stochastic model of repetitive activity of neurons, Biophys. J., 6 (1966), 53-69. |
[21] |
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron, Biophys. J., 4 (1964), 41-68. |
[22] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511815706. |
[23] |
J. D. Hamilton, Time Series Analysis, Princeton University Press, 1994. |
[24] |
A. V. Holden, Models of the Stochastic Activity of Neurones, Springer-Verlag, Berlin, 1976. |
[25] |
E. M. Izhikevich, Resonate-and-fire neurons, Neural. Netw., 14 (2001), 883-894. |
[26] |
B. Lindner, Interspike interval statistics of neurons driven by colored noise, Phys. Rev. E, 69 (2004), 022901. |
[27] |
B. Lindner, Low-pass filtering of information in the leaky integrate-and-fire neuron driven by white noise, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (eds. I. Visarath, A. Palacios and P. Longhini), Springer, 2012. |
[28] |
B. Lindner, M. J. Chacron, A. Longtin, Integrate-and-fire neurons with threshold noise - a tractable model of how interspike interval correlations affect neuronal signal transmission, Phys. Rev. E, 72 (2005), p021911, 21pp.
doi: 10.1103/PhysRevE.72.021911. |
[29] |
B. Lindner, D. Gangloff, A. Longtin and J. E. Lewis, Broadband coding with dynamic synapses, J. Neurosci., 29 (2009), 2076-2087.
doi: 10.1523/JNEUROSCI.3702-08.2009. |
[30] |
S. B. Lowen and M. C. Teich, Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales, J. Acoust. Soc. Am., 92 (1992), 803-806. |
[31] |
D. J. Mar, C. C. Chow, W. Gerstner, R. W. Adams and J. J. Collins, Noise shaping in populations of coupled model neurons, Proc. Natl. Acad. Sci., 96 (1999), 10450-10455.
doi: 10.1073/pnas.96.18.10450. |
[32] |
G. Marsat and G. S. Pollack, Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron, J. Neurophysiol., 92 (2004), 939-948. |
[33] |
C. Massot, M. Chacron and K. Cullen, Information transmission and detection thresholds in the vestibular nuclei: Single neurons vs. population encoding, J. Neurophysiol., 105 (2011), 1798-1814.
doi: 10.1152/jn.00910.2010. |
[34] |
M. Merkel and B. Lindner, Synaptic filtering of rate-coded information, Phys. Rev. E, 81 (2010), 041921, 19pp.
doi: 10.1103/PhysRevE.81.041921. |
[35] |
J. W. Middleton, A. Longtin, J. Benda and L. Maler, Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity, J. Neurophysiol., 101 (2009), 1160-1170.
doi: 10.1152/jn.90814.2008. |
[36] |
A. B. Neiman and D. F. Russell, Sensory coding in oscillatory electroreceptors of paddlefish, Chaos, 21 (2011), 047505.
doi: 10.1063/1.3669494. |
[37] |
A. Nikitin, N. Stocks and A. Bulsara, Enhancing the resolution of a sensor via negative correlation: A biologically inspired approach, Phys. Rev. Lett., 109 (2012), 238103. |
[38] |
A. M. M. Oswald, M. J. Chacron, B. Doiron, J. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes, J. Neurosci., 24 (2004), 4351-4362.
doi: 10.1523/JNEUROSCI.0459-04.2004. |
[39] |
S. A. Prescott and T. J. Sejnowski, Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms, J. Neurosci., 28 (2008), 13649-13661.
doi: 10.1523/JNEUROSCI.1792-08.2008. |
[40] |
F. Rieke, D. Bodnar and W. Bialek, Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents, Proc. Biol. Sci., 262 (1995), 259-265. |
[41] |
F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek, Spikes: Exploring the Neural Code, MIT Press, Cambridge, Massachusetts, 1999. |
[42] |
J. C. Roddey, B. Girish and J. P. Miller, Assessing the performance of neural encoding models in the presence of noise, J. Comput. Neurosci., 8 (2000), 95-112. |
[43] |
S. G. Sadeghi, M. J. Chacron, M. C. Taylor and K. E. Cullen, Neural variability, detection thresholds, and information transmission in the vestibular system, J. Neurosci., 27 (2007), 771-781. |
[44] |
T. Schwalger, K. Fisch, J. Benda and B. Lindner, How noisy adaptation of neurons shapes interspike interval histograms and correlations, PLoS Comp. Biol., 6 (2010), e1001026, 25pp.
doi: 10.1371/journal.pcbi.1001026. |
[45] |
R. Shannon, The mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[46] |
N. Sharafi, J. Benda and B. Lindner, Information filtering by synchronous spikes in a neural population, J. Comp. Neurosci., 34 (2013), 285-301.
doi: 10.1007/s10827-012-0421-9. |
[47] |
L. Shiau, T. Schwalger and B. Lindner, ISI correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation, J. Comp. Neurosci., 38 (2015), 589-600.
doi: 10.1007/s10827-015-0558-4. |
[48] |
J. Shin, The noise shaping neural coding hypothesis: A brief history and physiological implications, Neurocomp., 44 (2002), 167-175.
doi: 10.1016/S0925-2312(02)00379-X. |
[49] |
J. H. Shin, K. R. Lee and S. B. Park, Novel neural circuits based on stochastic pulse coding and noise feedback pulse coding, Int. J. Electronics, 74 (1993), 359-368.
doi: 10.1080/00207219308925840. |
[50] |
R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach, New York, 1967. |
[51] |
R. D. Vilela and B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation, Phys. Rev. E, 80 (2009), 031909.
doi: 10.1103/PhysRevE.80.031909. |
[52] |
R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Ann. Rev. Physiol., 64 (2002), 355-405. |
[1] |
K Najarian. On stochastic stability of dynamic neural models in presence of noise. Conference Publications, 2003, 2003 (Special) : 656-663. doi: 10.3934/proc.2003.2003.656 |
[2] |
Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial and Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010 |
[3] |
Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027 |
[4] |
Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137 |
[5] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[6] |
Matteo Ludovico Bedini, Rainer Buckdahn, Hans-Jürgen Engelbert. On the compensator of the default process in an information-based model. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 10-. doi: 10.1186/s41546-017-0017-4 |
[7] |
Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021165 |
[8] |
Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4-. doi: 10.1186/s41546-020-00046-x |
[9] |
Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems and Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169 |
[10] |
Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008 |
[11] |
Kseniia Kravchuk, Alexander Vidybida. Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences & Engineering, 2014, 11 (1) : 81-104. doi: 10.3934/mbe.2014.11.81 |
[12] |
Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13 |
[13] |
Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233-256. doi: 10.3934/mbe.2014.11.233 |
[14] |
Shuai Ren, Tao Zhang, Fangxia Shi. Characteristic analysis of carrier based on the filtering and a multi-wavelet method for the information hiding. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1291-1299. doi: 10.3934/dcdss.2015.8.1291 |
[15] |
Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058 |
[16] |
Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002 |
[17] |
Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 29-38. doi: 10.3934/dcdsb.2004.4.29 |
[18] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[19] |
M. B. Short, G. O. Mohler, P. J. Brantingham, G. E. Tita. Gang rivalry dynamics via coupled point process networks. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1459-1477. doi: 10.3934/dcdsb.2014.19.1459 |
[20] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]