Citation: |
[1] |
J. Benda and A. W. M. Herz, A universal model for spike-frequency adaptation, Neural Computation, 15 (2003), 2523-2564.doi: 10.1162/089976603322385063. |
[2] |
R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, Journal of Neurophysiology, 94 (2005), 3637-3642.doi: 10.1152/jn.00686.2005. |
[3] |
D. A. Brown and P. R. Adams, Muscarinic supression of a novel voltage-sensitive K+ current in a vertebrate neuron, Nature, 183 (1980), 673-676. |
[4] |
A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model, Mathematical Biosciences and Engineering, 11 (2014), 1-10. |
[5] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a generalized leaky integrate-and-fire model for single neuron activity, in Computer Aided Systems Theory - EUROCAST 2005, Lecture Notes in Computer Science, 5717, Springer, Berlin-Heidelberg, 2009, 152-158.doi: 10.1007/978-3-642-04772-5_21. |
[6] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Computation, 22 (2010), 2558-2585.doi: 10.1162/NECO_a_00023. |
[7] |
A. Buonocore , A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-800.doi: 10.2307/1427102. |
[8] |
A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19.doi: 10.1007/s00422-006-0068-6. |
[9] |
M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue, Neural Computation, 15 (2003), 253-278.doi: 10.1162/089976603762552915. |
[10] |
S. M. Crook, G. B. Ermentrout and J. M. Bower, Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators, Neural Computation, 10 (1998), 837-854.doi: 10.1162/089976698300017511. |
[11] |
Y. Dong, F. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-andfire neurons, Neural Computation, 23 (2011), 421-434.doi: 10.1162/NECO_a_00078. |
[12] |
B. Ermentrout, M. Pascal and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Computation, 13 (2001), 1285-1310.doi: 10.1162/08997660152002861. |
[13] |
I. A. Fleidervish, A. Friedman and M. J. Gutnick, Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices, The Journal of Physiology, 493 (1996), 83-97.doi: 10.1113/jphysiol.1996.sp021366. |
[14] |
G. Fuhrmann, H. Markram and M. Tsodyks, Spike frequency adaptation and neocortical rhythms, Journal of Neurophysiology, 88 (2002), 761-770. |
[15] |
R. Granit, D. Kernell and G. K. Shortess, Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents, The Journal of Physiology, 168 (1963), 911-931.doi: 10.1113/jphysiol.1963.sp007230. |
[16] |
B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA, 2001. |
[17] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, 117 (1952), 500-544. |
[18] |
A. V. Holden, Models of the Stochastic Activity of Neurones, Springer-Verlag, New York, 1976. |
[19] |
R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto and W. Gerstner, A benchmark test for a quantitative assessment of simple neuron models, Journal of Neuroscience Methods, 169 (2008), 417-424.doi: 10.1016/j.jneumeth.2007.11.006. |
[20] |
R. Kobayashi, Y. Tsubo and S. Shinomoto, Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold, Frontiers in Computational Neuroscience, 3 (2009), p9.doi: 10.3389/neuro.10.009.2009. |
[21] |
G. La Camera, A. Rauch, H. R. Luescher, W. Senn and S. Fusi, Minimal models of adapted neuronal response to in vivo-like input currents, Neural Computation, 16 (2004), 2101-2124.doi: 10.1162/0899766041732468. |
[22] |
Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron, Journal of Computational Neuroscience, 10 (2001), 24-45. |
[23] |
D. V. Madison and R. A. Nicoll, Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro, The Journal of Physiology, 354 (1984), 319-331. |
[24] |
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, Journal of Applied Probability, 22 (1985), 360-369.doi: 10.2307/3213779. |
[25] |
R. K. Powers, A. Sawczuk, J. R. Musick and M. D. Binder, Multiple mechanisms of spike-frequency adaptation in motoneurones, Journal of Physiology, 93 (1999), 101-114.doi: 10.1016/S0928-4257(99)80141-7. |
[26] |
A. Rauch, G. La Camera, H. R. Luescher, W. Senn and S. Fusi, Neocortical cells respond as integrate-and-fire neurons to in vivo-like input currents, Journal of Neurophysiology, 90 (2003), 1598-1612.doi: 10.1152/jn.00293.2003. |
[27] |
L. Sacerdote and M. Giraudo, Stochastic integrate and fire models: A review on mathematical methods and their applications, in Stochastic Biomathematical Models with Applications to Neuronal Modeling (eds. Bachar, Batzel and Ditlevsen), Lecture Notes in Mathematics 2058, Springer, Berlin-Heidelberg (2013), 99-148.doi: 10.1007/978-3-642-32157-3_5. |
[28] |
P. Sah, Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation, Trends in Neurosciences, 19 (1996), 150-154.doi: 10.1016/S0166-2236(96)80026-9. |
[29] |
S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Computation, 11 (1999), 935-951.doi: 10.1162/089976699300016511. |
[30] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neurosciences, 13 (1993), 334-350. |
[31] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology, Vol. 2, Cambridge University Press, Cambridge, England, 1988. |