Citation: |
[1] |
L. Abbott and T. Kepler, Model neurons: From Hodgkin-Huxley to Hopfield, Lect. Notes Phys., 368 (1990), p5. |
[2] |
J. A. Connor and C. F. Stevens, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma, J. Physiol., 213 (1971), 31-53.doi: 10.1113/jphysiol.1971.sp009366. |
[3] |
P. Dayan and L. Abbott, Theoretical Neuroscience - Computational and Mathematical Modeling of Neural Systems, Computational Neuroscience, MIT Press, Cambridge, MA, 2001. |
[4] |
M. Desroches, M. Krupa and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models, J. Math. Biol., 67 (2012), 989-1017.doi: 10.1007/s00285-012-0576-z. |
[5] |
S. Ditlevsen and P. Greenwood, The morris-lecar neuron model embeds a leaky integrate-and-fire model, J. Math. Biol., 67 (2013), 239-259.doi: 10.1007/s00285-012-0552-7. |
[6] |
R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.doi: 10.1016/S0006-3495(61)86902-6. |
[7] |
J. Ginoux and B. Rossetto, Differential geometry and mechanics: Applications to chaotic dynamical systems, Int. J. Bifurcat. Chaos, 16 (2006), 887-910.doi: 10.1142/S0218127406015192. |
[8] |
A. Hodgkin and A. Huxley, A quantitative description of the membrane current and application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. |
[9] |
E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, 2007. |
[10] |
T. Kepler, L. Abbott and E. Marder, Membranes with the same ion channel populations but different excitabilities, Biol. Cybern., 66 (1992), p381. |
[11] |
V. I. Krinsky and Yu. M. Kokoz, Analysis of equations of excitable membranes I. Reduction of the Hodgkin-Huxley equations to a second order system, Biofizika, 18 (1973), p506. |
[12] |
C. Meunier, Two and three dimensional reductions of the Hodgkin-Huxley system: Separation of time scales and bifurcations, Biol. Cybern., 67 (1992), 461-468.doi: 10.1007/BF00200990. |
[13] |
C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1981), 193-213.doi: 10.1016/S0006-3495(81)84782-0. |
[14] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.doi: 10.1109/JRPROC.1962.288235. |
[15] |
M. Okuda, New method of nonlinear analysis for shaping and threshold actions, J. Phys. Soc. Jpn., 41 (1976), 1815-1816.doi: 10.1143/JPSJ.41.1815. |
[16] |
B. Peng, V. Gaspar and K. Showalter, False bifurcations in chemical systems: Canards, Phil. Trans. R Soc. Lond. A, 337 (1991), 275-289.doi: 10.1098/rsta.1991.0123. |
[17] |
L. Perko, Differential Equations and Dynamical Systems, $3^{rd}$ edition, Texts in Applied Mathematics, 7, Springer, 2000. |
[18] |
J. Platkiewicz and R. Brette, A threshold equation for action potential initiation, PLoS Comput. Biol., 6 (2010), e1000850, 16 pp.doi: 10.1371/journal.pcbi.1000850. |
[19] |
M. Sekerli, C. Del Negro, R. Lee and R. Butera, Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies, IEEE T. Bio. Med. Eng., 51 (2004), 1665-1672.doi: 10.1109/TBME.2004.827531. |
[20] |
A. Tonnelier, Threshold curve for the excitability of bidimensional spiking neurons, Phys. Rev. E, 90 (2014), 022701.doi: 10.1103/PhysRevE.90.022701. |
[21] |
M. Wechselberge, J. Mitry and J. Rinzel, Canard theory and excitability, in Nonautonomous Dynamical Systems in the Life Sciences, Lecture Nones in Math., 2102, Springer, 2013, 89-132.doi: 10.1007/978-3-319-03080-7_3. |