Citation: |
[1] |
P. Andersen, R. Morris, D. Amaral T. Bliss and J. O'Keefe, Historical perspective: Proposed functions, biological characteristics, and neurobiological models of the hippocampus, in The Hippocampus Book (eds. P. Andersen, R. Morris, D. Amaral, T. Bliss and J. O'Keefe), Oxford University Press, 2006, 9-36. |
[2] |
T. M. Bartol, C. Bromer, J. Kinney, M. A. Chirillo, J. N. Bourne, K. M. Harris and T. J. Sejnowski, Hippocampal spine head sizes are highly precise, preprint, (2015).doi: 10.1101/016329. |
[3] |
K. W. Bieri, K. N. Bobbitt and L. L. Colgin, Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells, Neuron, 82 (2014), 670-681.doi: 10.1016/j.neuron.2014.03.013. |
[4] |
A. Bragin, G. Jando, Z. Nadasdy, J. Hetke, K. Wise and G. Buzsaki, Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat, J. Neurosci., 15 (1995), 47-60. |
[5] |
I. H. Brivanlou, J. L. Dantzker, C. F. Stevens and E. M. Callaway, Topographic specificity of functional connections from hippocampal CA3 to CA1, Proc. Natl. Acad. Sci. USA, 101 (2004), 2560-2565.doi: 10.1073/pnas.0308577100. |
[6] |
N. Brunel, V. Hakim, P. Isope, J. P. Nadal and B. Barbour, Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell, Neuron, 43 (2004), 745-757.doi: 10.1016/j.neuron.2004.08.023. |
[7] |
D. Bush, C. Barry and N. Burgess, What do grid cells contribute to place cell firing?, Trends Neurosci., 37 (2014), 136-145.doi: 10.1016/j.tins.2013.12.003. |
[8] |
S. Cash and R. Yuste, Linear summation of excitatory inputs by CA1 pyramidal neurons, Neuron, 22 (1999), 383-394.doi: 10.1016/S0896-6273(00)81098-3. |
[9] |
C. K. Chow, On the characterization of threshold functions, Proc. Symposium on Switching Circuit Theory and Logical Design (FOCS), (1961), 34-38.doi: 10.1109/FOCS.1961.24. |
[10] |
C. Clopath and N. Brunel, Optimal properties of analog perceptrons with excitatory weights, PLoS Comput. Biol., 9 (2013), e1002919.doi: 10.1371/journal.pcbi.1002919. |
[11] |
L. L. Colgin and E. I. Moser, Gamma oscillations in the hippocampus, Physiology (Bethesda), 25 (2010), 319-329.doi: 10.1152/physiol.00021.2010. |
[12] |
V. Cutsuridis, S. Cobb and B. P. Graham, Encoding and retrieval in a model of the hippocampal CA1 microcircuit, Hippocampus, 20 (2010), 423-446.doi: 10.1002/hipo.20661. |
[13] |
W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, NY, 1968. |
[14] |
A. A. Fenton and R. Muller, Place cell discharge is extremely variable during individual passes of the rat through the firing field, P. Natl. Acad. Sci. USA, 95 (1998), 3182-3187.doi: 10.1073/pnas.95.6.3182. |
[15] |
M. García-Sanchez and R. Huerta, Design parameters of the fan-out phase of sensory systems, J. Comput. Neurosci., 15 (2003), 5-17. |
[16] |
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, $2^{nd}$ edition, Addison-Wesley Professional, 1994. |
[17] |
R. Huerta, Learning pattern recognition and decision making in the insect brain, Proc. of AIP Conf., 1510 (2013), 101-119.doi: 10.1063/1.4776507. |
[18] |
F. Izsák, Maximum likelihood estimation for constrained parameters of multinomial distributions - Application to Zipf-Mandelbrot models, Comput. Stat. Data Anal., 51 (2006), 1575-1583.doi: 10.1016/j.csda.2006.05.008. |
[19] |
T. Jarsky, A. Roxin, W. L. Kath and N. Spruston, Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons, Nat. Neurosci., 8 (2005), 1667-1676.doi: 10.1038/nn1599. |
[20] |
G. A. Kerchner and R. A. Nicoll, Silent synapses and the emergence of a postsynaptic mechanism for LTP, Nat. Rev. Neurosci., 9 (2008), 813-825. |
[21] |
R. Kramer, D. Fortin and D. Trauner, New photochemical tools for controlling neuronal activity, Curr. Opin. Neurobiol., 19 (2009), 544-552.doi: 10.1016/j.conb.2009.09.004. |
[22] |
X. Li and G. A. Ascoli, Effects of synaptic synchrony on the neuronal input-output relationship, Neural. Comput., 20 (2008), 1717-1731.doi: 10.1162/neco.2008.10-06-385. |
[23] |
C. Loader, Fast and accurate computation of binomial probabilities, 2000. Available from: http://savannah.gnu.org/bugs/download.php?file_id=24016. |
[24] |
J. C. Magee and E. P. Cook, Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons, Nat. Neurosci., 3 (2000), 895-903. |
[25] |
W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, B. Math. Biophys., 5 (1943), 115-133.doi: 10.1007/BF02478259. |
[26] |
M. Megias, Z. Emri, T. F. Freund and A. I. Gulyas, Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells, Neuroscience, 102 (2001), 527-540.doi: 10.1016/S0306-4522(00)00496-6. |
[27] |
E. I. Moser and M. B. Moser, Grid cells and neural coding in high-end cortices, Neuron, 80 (2013), 765-774.doi: 10.1016/j.neuron.2013.09.043. |
[28] |
A. V. Olypher, P. Lansky and A. A. Fenton, Properties of the extra-positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing, Neuroscience, 111 (2002), 553-566.doi: 10.1016/S0306-4522(01)00586-3. |
[29] |
A. V. Olypher, W. W. Lytton and A. A. Prinz, Transformation of inputs in a model of the rat hippocampal CA1 network, SFN Meeting Planner, 11 (2010), p56.doi: 10.1186/1471-2202-11-S1-P56. |
[30] |
A. V. Olypher, W. W. Lytton and A. A. Prinz, Input-to-output transformation in a model of the rat hippocampal CA1 network, Front Comput. Neurosci., 6 (2012), p57.doi: 10.3389/fncom.2012.00057. |
[31] |
A. Olypher and J. Vaillant, On the properties of input-to-output transformations in networks of perceptrons, arXiv:1312.1206, (2013). |
[32] |
D. Parameshwaran and U. S. Bhalla, Summation in the hippocampal CA3-CA1 network remains robustly linear following inhibitory modulation and plasticity, but undergoes scaling and offset transformations, Front Comput. Neurosci., 6 (2012), p71.doi: 10.3389/fncom.2012.00071. |
[33] |
J. Perez-Orive, O. Mazor, G. C. Turner, S. Cassenaer, R. I. Wilson and G. Laurent, Oscillations and sparsening of odor representations in the mushroom body, Science, 297 (2002), 359-365.doi: 10.1126/science.1070502. |
[34] |
M. Smith, G. Ellis-Davies and J. Magee, Mechanism of the distance-dependent scaling of schaffer collateral synapses in rat CA1 pyramidal neurons, J. Physiol., 548 (2003), 245-258. |
[35] |
T. Solstad, H. N. Yousif and T. J. Sejnowski, Place cell rate remapping by CA3 recurrent collaterals, PLoS Comput. Biol., 10 (2014), e1003648.doi: 10.1371/journal.pcbi.1003648. |
[36] |
A. Treves and E. T. Rolls, Computational analysis of the role of the hippocampus in memory, Hippocampus, 4 (1994), 374-391.doi: 10.1002/hipo.450040319. |
[37] |
L. G. Valiant, The hippocampus as a stable memory allocator for cortex, Neural Comput., 24 (2012), 2873-2899.doi: 10.1162/NECO_a_00357. |