Citation: |
[1] |
J. Abate and W. Whitt, The fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.doi: 10.1007/BF01158520. |
[2] |
J. Abate and W. Whitt, Numerical inversion of laplace transforms of probability distributions, ORSA Journal on Computing, 7 (1995), 36-43.doi: 10.1287/ijoc.7.1.36. |
[3] |
L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process, Stochastic Models, 21 (2005), 967-980.doi: 10.1080/15326340500294702. |
[4] |
P. Baldi and L. Caramellino, Asymptotics of hitting probabilities for general one-dimensional pinned diffusions, Ann. Appl. Probab., 12 (2002), 1071-1095.doi: 10.1214/aoap/1031863181. |
[5] |
E. Bibbona and S. Ditlevsen, Estimation in discretely observed diffusions killed at a threshold, Scandinavian Journal of Statistics, 40 (2013), 274-293.doi: 10.1111/j.1467-9469.2012.00810.x. |
[6] |
E. Bibbona, P. Lansky, L. Sacerdote and R. Sirovich, Errors in estimation of the input signal for integrate-and-fire euronal models, Physical Review E, 78 (2008), 011918. |
[7] |
E. Bibbona, P. Lansky, L. Sacerdote and R. Sirovich, Estimating input parameters from intracellular recordings in the Feller neuronal model, Physical Review E, 81 (2010), 031916.doi: 10.1103/PhysRevE.81.031916. |
[8] |
A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons, Mathematical Biosciences and Engineering, 11 (2014), 189-201. |
[9] |
A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-800.doi: 10.2307/1427102. |
[10] |
A. N. Burkitt, A review of the integrate-and-fire neuron model. I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19.doi: 10.1007/s00422-006-0068-6. |
[11] |
A. N. Burkitt, A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties, Biological Cybernetics, 95 (2006), 97-112.doi: 10.1007/s00422-006-0082-8. |
[12] |
M. J. Caceres and B. Perthame, Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity, Journal of Theoretical Biology, 350 (2014), 81-89.doi: 10.1016/j.jtbi.2014.02.005. |
[13] |
S. Cavallari, S. Panzeri and A. Mazzoni, Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks, Frontiers in Neural Circuits, 8 (2014), p11.doi: 10.3389/fncir.2014.00012. |
[14] |
M. Chesney, M. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probabability, 29 (1997), 165-184.doi: 10.2307/1427865. |
[15] |
S. Ditlevsen and O. Ditlevsen, Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process, Probabilistic Engineering Mechanics, 23 (2008), 170-179.doi: 10.1016/j.probengmech.2007.12.024. |
[16] |
S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model, Physical Review. E (3), 71 (2005), 011907, 9pp.doi: 10.1103/PhysRevE.71.011907. |
[17] |
S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Feller neuronal model, Physical Review E, 73 (2006), 061910, 9pp.doi: 10.1103/PhysRevE.73.061910. |
[18] |
G. Dumont and J. Henry, Population density models of integrate-and-fire neurons with jumps: Well-posedness, Journal of Mathematical Biology, 67 (2013), 453-481.doi: 10.1007/s00285-012-0554-5. |
[19] |
G. Dumont and J. Henry, Synchronization of an excitatory integrate-and-fire neural network, Bulletin of Mathematical Biology, 75 (2013), 629-648.doi: 10.1007/s11538-013-9823-8. |
[20] |
A. Elbert and M. E. Muldoon, Inequalities and monotonicity properties for zeros of hermite functions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 129 (1999), 57-75.doi: 10.1017/S0308210500027463. |
[21] |
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron, Biophysical Journal, 4 (1964), 41-68.doi: 10.1016/S0006-3495(64)86768-0. |
[22] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity, Cambridge University Press, 2002.doi: 10.1017/CBO9780511815706. |
[23] |
R. K. Getoor, Excursions of a Markov process, Annals of Probability, 7 (1979), 244-266.doi: 10.1214/aop/1176995086. |
[24] |
V. Giorno, G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of first-passage-time probability densities via non-singular integral, Advances in Applied Probability, 21 (1989), 20-36.doi: 10.2307/1427196. |
[25] |
M. T. Giraudo, P. Greenwood and L. Sacerdote, How sample paths of leaky integrate-and-fire models are influenced by the presence of a firing threshold, Neural Computation, 23 (2011), 1743-1767.doi: 10.1162/NECO_a_00143. |
[26] |
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.doi: 10.1080/03610919908813596. |
[27] |
D. Grytskyy, T. Tetzlaff, M. Diesmann and M. Helias, A unified view on weakly correlated recurrent networks, Frontiers in Computational Neuroscience, 7 (2013), p131.doi: 10.3389/fncom.2013.00131. |
[28] |
J. Inoue, S. Sato and L. M. Ricciardi, On the parameter estimation for diffusion models of single neuron's activities, Biological Cybernetics, 73 (1995), 209-221.doi: 10.1007/BF00201423. |
[29] |
K. Itô, Poisson point processes attached to Markov processes, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, Univ. California Press, Berkeley, Calif., 1972, 225-239. |
[30] |
R. Jolivet, A. Rauch, H. Lüscher and W. Gerstner, Integrate-and-fire models with adaptation are good enough, in Advances in Neural Information Processing Systems 18 (eds. Y. Weiss, B. Sch\"olkopf and J. Platt), MIT Press, 2006, 595-602. |
[31] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Vol. 113, Springer-Verlag, 1991.doi: 10.1007/978-1-4612-0949-2. |
[32] |
R. Kobayashi, Y. Tsubo and S. Shinomoto, Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold, Frontiers in Computational Neuroscience, 3 (2009), p9.doi: 10.3389/neuro.10.009.2009. |
[33] |
A. Koutsou, J. Kanev and C. Christodoulou, Measuring input synchrony in the Ornstein-Uhlenbeck neuronal model through input parameter estimation, Brain Research, 1536 (2013), 97-106.doi: 10.1016/j.brainres.2013.05.012. |
[34] |
P. Lansky, Inference for the diffusion models of neuronal activity, Mathematical Bioscience, 67 (1983), 247-260.doi: 10.1016/0025-5564(83)90103-7. |
[35] |
P. Lansky and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models, Biological Cybernetics, 99 (2008), 253-262.doi: 10.1007/s00422-008-0237-x. |
[36] |
P. Lánskỳ, R. Rodriguez and L. Sacerdote, Mean instantaneous firing frequency is always higher than the firing rate, Neural Computation, 16 (2004), 477-489. |
[37] |
P. Lansky, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model, Journal of Computational Neuroscence, 21 (2006), 211-223.doi: 10.1007/s10827-006-8527-6. |
[38] |
N. Lebedev, Special Functions and Their Applications, Courier Corporation, 1972. |
[39] |
B. Lindner, M. J. Chacron and A. Longtin, Integrate-and-fire neurons with threshold noise: A tractable model of how interspike interval correlations affect neuronal signal transmission, Physical Review E, 72 (2005), 021911, 21pp.doi: 10.1103/PhysRevE.72.021911. |
[40] |
B. Øksendal, Stochastic Differential Equations, Springer-Verlag, 2003.doi: 10.1007/978-3-642-14394-6. |
[41] |
J. Pitman and M. Yor, Hitting, occupation and inverse local times of one-dimensional diffusions: Martingale and excursion approaches, Bernoulli, 9 (2003), 1-24.doi: 10.3150/bj/1068129008. |
[42] |
L. M. Ricciardi, Diffusion Processes and Related Topics in Biology, Springer-Verlag, Berlin-New York, 1977. |
[43] |
L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity, Biological Cybernetics, 35 (1979), 1-9.doi: 10.1007/BF01845839. |
[44] |
M. J. Richardson, Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive, Physical Review E, 76 (2007), 021919.doi: 10.1103/PhysRevE.76.021919. |
[45] |
L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2, Cambridge University Press, Cambridge, 2000. |
[46] |
L. Sacerdote and M. T. Giraudo, Stochastic integrate and fire models: A review on mathematical methods and their applications, in Stochastic Biomathematical Models, Lecture Notes in Math., 2058, Springer, Heidelberg, 2013, 99-148.doi: 10.1007/978-3-642-32157-3_5. |
[47] |
S. Sato, On the moments of the firing interval of the diffusion approximated model neuron, Mathematical Bioscience, 39 (1978), 53-70.doi: 10.1016/0025-5564(78)90027-5. |
[48] |
M. Tamborrino, S. Ditlevsen and P. Lansky, Parameter inference from hitting times for perturbed Brownian motion, Lifetime Data Analysis, 21 (2015), 331-352.doi: 10.1007/s10985-014-9307-7. |
[49] |
M. Tamborrino, L. Sacerdote and M. Jacobsen, Weak convergence of marked point processes generated by crossings of multivariate jump processes. Applications to neural network modeling, Physica D: Nonlinear Phenomena, 288 (2014), 45-52.doi: 10.1016/j.physd.2014.08.003. |
[50] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology. Vol. 1. Linear Cable Theory and Dendritic Structure, Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988. |
[51] |
H. C. Tuckwell, Introduction to theoretical neurobiology. Vol. 2. Nonlinear and Stochastic Theories, Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988. |
[52] |
Y. Yu, Y. Xiong, Y. Chan and J. He, Corticofugal gating of auditory information in the thalamus: An in vivo intracellular recording study, The Journal of Neuroscience, 24 (2004), 3060-3069.doi: 10.1523/JNEUROSCI.4897-03.2004. |