# American Institute of Mathematical Sciences

• Previous Article
A toxin-mediated size-structured population model: Finite difference approximation and well-posedness
• MBE Home
• This Issue
• Next Article
An adaptive feedback methodology for determining information content in stable population studies
2016, 13(4): 673-695. doi: 10.3934/mbe.2016014

## Optimal harvesting policy for the Beverton--Holt model

 1 Missouri University of Science and Technology, 400 West, 12th Street, Rolla, MO 65409-0020, United States, United States

Received  September 2015 Revised  December 2015 Published  May 2016

In this paper, we establish the exploitation of a single population modeled by the Beverton--Holt difference equation with periodic coefficients. We begin our investigation with the harvesting of a single autonomous population with logistic growth and show that the harvested logistic equation with periodic coefficients has a unique positive periodic solution which globally attracts all its solutions. Further, we approach the investigation of the optimal harvesting policy that maximizes the annual sustainable yield in a novel and powerful way; it serves as a foundation for the analysis of the exploitation of the discrete population model. In the second part of the paper, we formulate the harvested Beverton--Holt model and derive the unique periodic solution, which globally attracts all its solutions. We continue our investigation by optimizing the sustainable yield with respect to the harvest effort. The results differ from the optimal harvesting policy for the continuous logistic model, which suggests a separate strategy for populations modeled by the Beverton--Holt difference equation.
Citation: Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014
##### References:
 [1] L. Bai and K. Wang, A diffusive single-species model with periodic coefficients and its optimal harvesting policy, Appl. Math. Comput., 187 (2007), 873-882. doi: 10.1016/j.amc.2006.09.007. [2] J. Barić, R. Bibi, M. Bohner, A. Nosheen and J. Pečarić, Jensen inequalities on time scales, in Monographs in Inequalities, ELEMENT, Zagreb, Volume 9, 2015. [3] L. Berezansky and E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl., 10 (2004), 851-868. doi: 10.1080/10236190410001726421. [4] R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Populations, Fish & Fisheries Series, 1993. doi: 10.1007/978-94-011-2106-4. [5] D. K. Bhattacharya and S. Begum, Bionomic equilibrium of two-species system. I, Math. Biosci., 135 (1996), 111-127. doi: 10.1016/0025-5564(95)00170-0. [6] M. Bohner and R. Chieochan, The Beverton-Holt $q$-difference equation, J. Biol. Dyn., 7 (2013), 86-95. [7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1. [8] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9. [9] M. Bohner, S. Stević and H. Warth, The Beverton-Holt difference equation, in Discrete dynamics and difference equations, World Sci. Publ., Hackensack, NJ, (2010), 189-193. doi: 10.1142/9789814287654_0012. [10] M. Bohner and S. H. Streipert, The Beverton-Holt equation with periodic growth rate, Int. J. Math. Comput., 26 (2015), 1-10. [11] M. Bohner and S. H. Streipert, The Beverton-Holt $q$-difference equation with periodic growth rate, in Difference equations, discrete dynamical systems, and applications, Springer-Verlag, Berlin-Heidelberg-New York, 150 (2015), 3-14. doi: 10.1007/978-3-319-24747-2_1. [12] M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007-1015. doi: 10.1080/00036810701474140. [13] E. Braverman and L. Braverman, Optimal harvesting of diffusive models in a nonhomogeneous environment, Nonlinear Anal., 71 (2009), e2173-e2181. doi: 10.1016/j.na.2009.04.025. [14] E. Braverman and R. Mamdani, Continuous versus pulse harvesting for population models in constant and variable environment, J. Math. Biol., 57 (2008), 413-434. doi: 10.1007/s00285-008-0169-z. [15] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, John Wiley & Sons, Inc., New York, 1990. [16] T. Diagana, Almost automorphic solutions to a Beverton-Holt dynamic equation with survival rate, Appl. Math. Lett., 36 (2014), 19-24. doi: 10.1016/j.aml.2014.04.011. [17] M. Fan and K. Wang, Optimal harvesting policy for single population with periodic coefficients, Math. Biosci., 152 (1998), 165-177. doi: 10.1016/S0025-5564(98)10024-X. [18] B.-S. Goh, Management and Analysis of Biological Populations, Volume 8, Elsevier North-Holland, Inc., New York, NY, 1980. [19] M. Holden, Beverton and Holt revisited, Fisheries Research, 24 (1995), 3-8. doi: 10.1016/0165-7836(95)00377-M. [20] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. [21] C. Kent, V. Kocic and Y. Kostrov, Attenuance and resonance in a periodically forced sigmoid Beverton-Holt model, Int. J. Difference Equ., 7 (2012), 35-60. [22] V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Equ. Appl., 11 (2005), 415-422. doi: 10.1080/10236190412331335463. [23] V. L. Kocic and Y. Kostrov, Dynamics of a discontinuous discrete Beverton-Holt model, J. Difference Equ. Appl., 20 (2014), 859-874. doi: 10.1080/10236198.2013.824968. [24] A. W. Leung, Optimal harvesting-coefficient control of steady-state prey-predator diffusive Volterra-Lotka systems, Appl. Math. Optim., 31 (1995), 219-241. doi: 10.1007/BF01182789. [25] G. Papaschinopoulos, C. J. Schinas and G. Stefanidou, Two modifications of the Beverton-Holt equation, Int. J. Difference Equ., 4 (2009), 115-136. [26] Z. Pavić, J. Pečarić and I. Perić, Integral, discrete and functional variants of Jensen's inequality, J. Math. Inequal., 5 (2011), 253-264. doi: 10.7153/jmi-05-23. [27] O. Tahvonen, Optimal harvesting of age-structured fish populations, Mar. Resour. Econ., 24 (2009), 147-169. [28] G. V. Tsvetkova, Construction of an optimal policy taking into account ecological constraints, (Russian) (Chita) in Modeling of natural systems and optimal control problems, VO "Nauka'', Novosibirsk, (1993), 65-74. [29] P.-F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population, Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42. [30] F.-H. Wong, C.-C. Yeh and W.-C. Lian, An extension of Jensen's inequality on time scales, Adv. Dyn. Syst. Appl., 1 (2006), 113-120. [31] C. Xu, M. S. Boyce and J. D. Daley, Harvesting in seasonal environments, J. Math. Biol., 50 (2005), 663-682. doi: 10.1007/s00285-004-0303-5. [32] X. Zhang, Z. Shuai and K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639-651. doi: 10.1016/S1468-1218(02)00084-6. [33] M. Ziolko and J. Kozlowski, Some optimization models of growth in biology, IEEE Trans. Automat. Cont., 40 (1995), 1779-1783. doi: 10.1109/9.467682.

show all references

##### References:
 [1] L. Bai and K. Wang, A diffusive single-species model with periodic coefficients and its optimal harvesting policy, Appl. Math. Comput., 187 (2007), 873-882. doi: 10.1016/j.amc.2006.09.007. [2] J. Barić, R. Bibi, M. Bohner, A. Nosheen and J. Pečarić, Jensen inequalities on time scales, in Monographs in Inequalities, ELEMENT, Zagreb, Volume 9, 2015. [3] L. Berezansky and E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl., 10 (2004), 851-868. doi: 10.1080/10236190410001726421. [4] R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Populations, Fish & Fisheries Series, 1993. doi: 10.1007/978-94-011-2106-4. [5] D. K. Bhattacharya and S. Begum, Bionomic equilibrium of two-species system. I, Math. Biosci., 135 (1996), 111-127. doi: 10.1016/0025-5564(95)00170-0. [6] M. Bohner and R. Chieochan, The Beverton-Holt $q$-difference equation, J. Biol. Dyn., 7 (2013), 86-95. [7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1. [8] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9. [9] M. Bohner, S. Stević and H. Warth, The Beverton-Holt difference equation, in Discrete dynamics and difference equations, World Sci. Publ., Hackensack, NJ, (2010), 189-193. doi: 10.1142/9789814287654_0012. [10] M. Bohner and S. H. Streipert, The Beverton-Holt equation with periodic growth rate, Int. J. Math. Comput., 26 (2015), 1-10. [11] M. Bohner and S. H. Streipert, The Beverton-Holt $q$-difference equation with periodic growth rate, in Difference equations, discrete dynamical systems, and applications, Springer-Verlag, Berlin-Heidelberg-New York, 150 (2015), 3-14. doi: 10.1007/978-3-319-24747-2_1. [12] M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007-1015. doi: 10.1080/00036810701474140. [13] E. Braverman and L. Braverman, Optimal harvesting of diffusive models in a nonhomogeneous environment, Nonlinear Anal., 71 (2009), e2173-e2181. doi: 10.1016/j.na.2009.04.025. [14] E. Braverman and R. Mamdani, Continuous versus pulse harvesting for population models in constant and variable environment, J. Math. Biol., 57 (2008), 413-434. doi: 10.1007/s00285-008-0169-z. [15] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, John Wiley & Sons, Inc., New York, 1990. [16] T. Diagana, Almost automorphic solutions to a Beverton-Holt dynamic equation with survival rate, Appl. Math. Lett., 36 (2014), 19-24. doi: 10.1016/j.aml.2014.04.011. [17] M. Fan and K. Wang, Optimal harvesting policy for single population with periodic coefficients, Math. Biosci., 152 (1998), 165-177. doi: 10.1016/S0025-5564(98)10024-X. [18] B.-S. Goh, Management and Analysis of Biological Populations, Volume 8, Elsevier North-Holland, Inc., New York, NY, 1980. [19] M. Holden, Beverton and Holt revisited, Fisheries Research, 24 (1995), 3-8. doi: 10.1016/0165-7836(95)00377-M. [20] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. [21] C. Kent, V. Kocic and Y. Kostrov, Attenuance and resonance in a periodically forced sigmoid Beverton-Holt model, Int. J. Difference Equ., 7 (2012), 35-60. [22] V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Equ. Appl., 11 (2005), 415-422. doi: 10.1080/10236190412331335463. [23] V. L. Kocic and Y. Kostrov, Dynamics of a discontinuous discrete Beverton-Holt model, J. Difference Equ. Appl., 20 (2014), 859-874. doi: 10.1080/10236198.2013.824968. [24] A. W. Leung, Optimal harvesting-coefficient control of steady-state prey-predator diffusive Volterra-Lotka systems, Appl. Math. Optim., 31 (1995), 219-241. doi: 10.1007/BF01182789. [25] G. Papaschinopoulos, C. J. Schinas and G. Stefanidou, Two modifications of the Beverton-Holt equation, Int. J. Difference Equ., 4 (2009), 115-136. [26] Z. Pavić, J. Pečarić and I. Perić, Integral, discrete and functional variants of Jensen's inequality, J. Math. Inequal., 5 (2011), 253-264. doi: 10.7153/jmi-05-23. [27] O. Tahvonen, Optimal harvesting of age-structured fish populations, Mar. Resour. Econ., 24 (2009), 147-169. [28] G. V. Tsvetkova, Construction of an optimal policy taking into account ecological constraints, (Russian) (Chita) in Modeling of natural systems and optimal control problems, VO "Nauka'', Novosibirsk, (1993), 65-74. [29] P.-F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population, Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42. [30] F.-H. Wong, C.-C. Yeh and W.-C. Lian, An extension of Jensen's inequality on time scales, Adv. Dyn. Syst. Appl., 1 (2006), 113-120. [31] C. Xu, M. S. Boyce and J. D. Daley, Harvesting in seasonal environments, J. Math. Biol., 50 (2005), 663-682. doi: 10.1007/s00285-004-0303-5. [32] X. Zhang, Z. Shuai and K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639-651. doi: 10.1016/S1468-1218(02)00084-6. [33] M. Ziolko and J. Kozlowski, Some optimization models of growth in biology, IEEE Trans. Automat. Cont., 40 (1995), 1779-1783. doi: 10.1109/9.467682.
 [1] E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461 [2] Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575 [3] Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 [4] Igor Nazarov, Bai-Lian Li. Maximal sustainable yield in a multipatch habitat. Conference Publications, 2005, 2005 (Special) : 682-691. doi: 10.3934/proc.2005.2005.682 [5] S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279 [6] Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 [7] Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150 [8] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [9] Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 [10] Xianhua Tang, Xingfu Zou. A 3/2 stability result for a regulated logistic growth model. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 265-278. doi: 10.3934/dcdsb.2002.2.265 [11] Qian Zhao, Bin Liu. Global generalized solutions to the forager-exploiter model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021273 [12] Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681 [13] Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022 [14] Yaoyao Luo, Run Xu. The nonexistence of global solution for system of q-difference inequalities. Mathematical Foundations of Computing, 2020, 3 (3) : 195-203. doi: 10.3934/mfc.2020019 [15] Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864 [16] Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 885-902. doi: 10.3934/dcds.2021141 [17] Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691 [18] Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813 [19] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [20] Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024

2018 Impact Factor: 1.313