Citation: |
[1] |
J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Markers of disease evolution: The case of tuberculosis, J Theor Biol, 215 (2002), 227-237.doi: 10.1006/jtbi.2001.2489. |
[2] |
J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Long-term dynamics and re-emergence of tuberculosis, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer-Verlag. Edited by Sally Blower, Carlos Castillo-Chavez, Denise Kirschner, Pauline van den Driessche and Abdul-Aziz Yakubu, 125 (2002), 351-360.doi: 10.1007/978-1-4757-3667-0_20. |
[3] |
J. P. Aparicio, A. F. Capurro and C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J Theor Biol, 206 (2000), 327-341.doi: 10.1006/jtbi.2000.2129. |
[4] |
J. P. Aparicio and C. Castillo-Chavez, Mathematical modelling of tuberculosis epidemics, Math Biosci Eng, 6 (2009), 209-237.doi: 10.3934/mbe.2009.6.209. |
[5] |
J. H. Bates, W. Stead and T. A. Rado, Phage type of tubercle bacilli isolated from patients with two or more sites of organ involvement, Am Rev Respir Dis, 114 (1976), 353-358. |
[6] |
B. R. Bloom, Tuberculosis: Pathogenesis, Protection, and Control, ASM Press, Washington, D.C., 1994. |
[7] |
S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.doi: 10.1038/nm0895-815. |
[8] |
F. Brauer and C. Castillo-Chavez, Mathematical Models for Communicable Diseases, SIAM, 2013. |
[9] |
C. Castillo-Chavez, Chalenges and opportunities in mathematical and theoretical biology and medicine: foreword to volume 2 (2013) of Biomath, Biomath, 2 (2013), 1312319, 2pp.doi: 10.11145/j.biomath.2013.12.319. |
[10] |
C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J Math Biol, 35 (1997), 629-656.doi: 10.1007/s002850050069. |
[11] |
C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of tuberculosis, Advances in Mathematical Population Dynamics - Molecules, Cells, and Man O. Arino, D. Axelrod, M. Kimmel, (eds), World Scientific Press, (1998), 629-656. |
[12] |
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math Biosci Eng, 1 (2004), 361-404.doi: 10.3934/mbe.2004.1.361. |
[13] |
C. Y. Chiang and L. W. Riley, Exogenous reinfection in tuberculosis, Lancet Infect Dis, 5 (2005), 629-636.doi: 10.1016/S1473-3099(05)70240-1. |
[14] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[15] |
Z. Feng, C. Castillo-Chavez and A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theor Popul Biol, 57 ( 2000), 235-247.doi: 10.1006/tpbi.2000.1451. |
[16] |
Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis, Journal of Dynamics and Differential Equations, 13 (2001), 425-452.doi: 10.1023/A:1016688209771. |
[17] |
Z. Feng, D. Xu and H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bulletin of Mathematical Biology, 69 (2007), 1511-1536.doi: 10.1007/s11538-006-9174-9. |
[18] |
Antibiotic-resistant Diseases Pose 'Apocalyptic' Threat, Top Expert Says, 2013. Available from: http://www.theguardian.com/society/2013/jan/23/antibiotic-resistant-diseases-apocalyptic-threat, |
[19] |
Guidelines on the Management of Latent Tuberculosis Infection, 2015. Available from: http://apps.who.int/medicinedocs/documents/s21682en/s21682en.pdf. |
[20] |
H. M. Hethcote, Qualitative analysis for communicable disease models, Math Biosc, 28 (1976), 335-356.doi: 10.1016/0025-5564(76)90132-2. |
[21] |
H. M. Hethcote, The Mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653.doi: 10.1137/S0036144500371907. |
[22] |
J. M. Hyman and J. Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Mathematical Biosciences, 167 (2000), 65-86.doi: 10.1016/S0025-5564(00)00025-0. |
[23] |
E. Ibargüen-Mondragón and L. Esteva, On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics, Math Biosc, 246 (2013), 84-93.doi: 10.1016/j.mbs.2013.08.005. |
[24] |
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker Inc, New York and Basel, 41, 1989. |
[25] |
M. L. Lambert, E. Hasker, A. Van Deun, D. Roberfroid, M. Boelaert and P. Van Der Stuyft, Recurrence in tuberculosis: Relapse or reinfection?, Lancet Infect Dis, 3 (2003), 282-287.doi: 10.1016/S1473-3099(03)00607-8. |
[26] |
E. Nardell, B. Mc Innis, B. Thomas and S. Weidhaas, Exogenous reinfection with tuberculosis in a shelter for the homeless, N Engl J Med, 315 (1986), 1570-1575.doi: 10.1056/NEJM198612183152502. |
[27] |
E. Oldfield and X. Feng, Resistance-resistant antibiotics, Trends in Pharmacological Sciences, 35 (2014), 664-674.doi: 10.1016/j.tips.2014.10.007. |
[28] |
T. C. Porco and S. M. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis, Theoretical Population Biology, 54 (1998), 117-132.doi: 10.1006/tpbi.1998.1366. |
[29] |
J. W. Raleigh and R. H. Wichelhausen, Exogenous reinfection with mycobacterium tuberculosis confirmed by phage typing, Am Rev Respir Dis, 108 (1973), 639-642. |
[30] |
J. W. Raleigh, R. H. Wichelhausen, T. A. Rado and J. H. Bates, Evidence for infection by two distinct strains of mycobacterium tuberculosis in pulmonary tuberculosis: Report of 9 cases, Am Rev Respir Dis, 112 (1975), 497-503. |
[31] |
M. Raviglione, Drug-Resistant TB Surveillance and Response, Global Tuberculosis Report 2014, 2014. Available from: http://www.who.int/tb/publications/global_report/gtbr14_supplement_web_v3.pdf. |
[32] |
L. W. Roeger, Z. Feng and C. Castillo-Chavez, Modeling TB and HIV co-infections, Math Biosci Eng, 6 (2009), 815-837.doi: 10.3934/mbe.2009.6.815. |
[33] |
G. Shen, Z. Xue, X. Shen, B. Sun, X. Gui, M. Shen, J. Mei and Q. Gao, Recurrent tuberculosis and exogenous reinfection, Shanghai, China, Emerging Infectious Disease, 12 (2006), 1176-1178.doi: 10.3201/eid1211.051207. |
[34] |
P. M. Small, R. W. Shafer, P. C. Hopewell, P. C. Singh, M. J. Murphy, E. Desmond , M. F. Sierra and G. K. Schoolnik, Exogenous reinfection with multidrug-resistant mycobacterium tuberculosis in patients wit advanced HIV infection, N Engl J Med, 328 (1993), 1137-1144. |
[35] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 1995. |
[36] |
B. Song, Dynamical Epidemic Models and Their Applications, Thesis (Ph.D.)-Cornell University, 2002. |
[37] |
B. Song, C. Castillo-Chavez and J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts, Mathematical Biosciences, 180 (2002), 187-205.doi: 10.1016/S0025-5564(02)00112-8. |
[38] |
B. Song, C. Castillo-Chavez and J. P. Aparicio, Global dynamics of tuberculosis models with density dependent demography, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models Methods and Theory (eds. C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. A. Yakubu), Springer, New York, IMA, 126 (2002), 275-294.doi: 10.1007/978-1-4613-0065-6_16. |
[39] |
W. W. Stead, The pathogenesis of pulmonary tuberculosis among older persons, Am Rev Respir Dis, 91 (1965), 811-22. |
[40] |
T. C. Porco and S. M. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis, Theoretical Population Biology, 54 (1998), 117-132.doi: 10.1006/tpbi.1998.1366. |
[41] |
X. Wang, Backward Bifurcation in a Mathematical Model for Tuberculosis with Loss of Immunity, Ph.D. Thesis, Purdue University, 2005. |
[42] |
X. Wang, Z. Feng, J. P. Aparicio and C. Castillo-Chavez, On the dynamics of reinfection: The case of tuberculosis, BIOMAT 2009, International Symposium on Mathematical and Computational Biology, (2010), 304-330.doi: 10.1142/9789814304900_0021. |
[43] |
Global Tuberculosis Control: Who Report 2010, 2010. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/F530290AD0279399C12577D8003E9D65-Full_Report.pdf. |