2016, 13(4): 787-812. doi: 10.3934/mbe.2016018

Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation

1. 

Department of Mathematical Sciences, Cameron University, 2800 West Gore Boulevard, Lawton, OK 73505

Received  May 2015 Revised  December 2015 Published  May 2016

We propose a model of two-species competition in the chemostat for a single growth-limiting, nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool of resources. The model also allows allelopathic effects of one toxin-producing species, both on itself (autotoxicity) and on its nontoxic competitor (phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, and uniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.
Citation: Jean-Jacques Kengwoung-Keumo. Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences & Engineering, 2016, 13 (4) : 787-812. doi: 10.3934/mbe.2016018
References:
[1]

M. An, D. Liu, I. Johnson and J. Lovett, Mathematical modelling of allelopathy. II. The dynamics of allelochemicals from living plants in the environment, Ecol. Model., 161 (2003), 53-66. doi: 10.1016/S0304-3800(02)00289-2.

[2]

H. M. Anderson, V. Hutson and R. Law, On the conditions for persistence of species in ecological communities, Amer. Natur., 139 (1992), 663-668.

[3]

R. Aris and A. E. Humphrey, Dynamics of a chemostat in which two organisms compete for a common substrate, Biotechnol. Bioeng., 19 (1977), 707-723. doi: 10.1002/bit.260190910.

[4]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci., 118 (1993), 127-180. doi: 10.1016/0025-5564(93)90050-K.

[5]

E. Beretta, Bischi and G. F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99-111. doi: 10.1007/BF00171521.

[6]

B. Boon and H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447.

[7]

G. J. Butler and G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167-191. doi: 10.1007/BF00275997.

[8]

G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources, Math. Biosci., 83 (1987), 1-48. doi: 10.1016/0025-5564(87)90002-2.

[9]

S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source- A mathematical study, J. Biol. Syst., 16 (2008), 547-564. doi: 10.1142/S0218339008002654.

[10]

P. Chesson, J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl, R. D. Holt, S. A. Richards, R. M. Nisbet and T. J. Case, The interaction between predation and competition: A review and synthesis, Eco. Let., 5 (2002), 302-315. doi: 10.1038/nature07248.

[11]

A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 6 (1999), 303-339. doi: 10.1006/bulm.1998.0082.

[12]

A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-systems approach, J. Plankton Res., 23 (2001), 389-413.

[13]

J. P. Grover and R. D. Holt, Disentangling resource and apparent competition: Realistic models for plant-herbivore communities, J. Theor. Biol., 191 (1998), 353-376. doi: 10.1006/jtbi.1997.0562.

[14]

T. G. Hallam, On persistence of aquatic ecosystems, In: Anderson, N. R., Zahurance, B. G. (eds). Oceanic Sound Scattering Predication, 1977, 749-765. New York: Plenum.

[15]

T. G. Hallam, Controlled persistence in rudimentary plankton models, In: Avula, J. R. (eds). Math. Model., 4 (1977), 2081-2088. Rolla: University of Missouri Press.

[16]

T. G. Hallam, Structural Sensitivity of grazing formulation in nutrient controlled plankton models, J. Math. Biol., 5 (1978), 261-280. doi: 10.1007/BF00276122.

[17]

S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretical forecast outcomes, Sci., 207 (1980), 1491-1493. doi: 10.1126/science.6767274.

[18]

G. Hardin, The competitive exclusion principle, Sci., New series, 131 (1960), 1292-1297. doi: 10.1126/science.131.3409.1292.

[19]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, Amer. Natur., 144 (1994), 741-771. doi: 10.1086/285705.

[20]

S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383. doi: 10.1137/0132030.

[21]

S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763. doi: 10.1137/0134064.

[22]

S. R. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput. Math. Appl., 49 (2005), 375-378. doi: 10.1016/j.camwa.2004.03.013.

[23]

J. L. Jost, S. F. Drake, A. G. Fredrickson and M. Tsuchiya, Interaction of tetrahymena pyriformis, escherichia, coli, azotobacter vinelandii and glucose in a minimal medium, J. Bacteriol., 113 (1976), 834-840.

[24]

J.-J. Kengwoung-Keumo, Dynamics of two phytoplankton populations under predation, J. Math. Bio. Eng., 11 (2014), 1319-1336. doi: 10.3934/mbe.2014.11.1319.

[25]

J. A. León and D. B. Tumpson, Competition between two species for two complementary or substitutable resources, J. Theor. Biol., 50 (1975), 185-201.

[26]

B. Li and Y. Kuang, Simple Food Chain in a Chemostat with Distinct Removal Rates, J. Math. Anal. Appl., 242 (2000), 75-92. doi: 10.1006/jmaa.1999.6655.

[27]

J. Maynard-Smith, Models in Ecology, Cambridge University Press, 1974.

[28]

R. K. Miller, Nonlinear Volterra Equation, W. A. Benjamin, N.Y., 1971.

[29]

H. Molisch, Der Einfluss Einer Pflanze Auf Die Andere-Allelopathie, Fischer, Jena, 1937.

[30]

J. Monod, Recherche Sur La Croissance Des Cultures Bacteriennes, Hermann et Cie., Paris, 1942.

[31]

B. Mukhopadhyay and R. Bhattacharryya, Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity, Ecol. Model., 198 (2006), 163-173. doi: 10.1016/j.ecolmodel.2006.04.005.

[32]

M. Nakamaru and Y. Iwasa, Competition by allelopathy proceeds in travelling waves: colicin-immune strain aids colicin-sensitive strain, Theor. Popul. Biol., 57 (2000), 131-144.

[33]

L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer, 2001. doi: 10.1007/978-1-4613-0003-8.

[34]

M. J. Piotrowska, U. Foryś and M. Bodnar, A simple model of carcinogenic mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861-872. doi: 10.3934/mbe.2013.10.861.

[35]

D. Rapport, An optimization model of food selection, Amer. Natur., 105 (1971), 575-587. doi: 10.1086/282746.

[36]

E. L. Rice, Allelopathy, Academic Press, Inc. 1984.

[37]

G. A. Riley, A mathematical model of regional variations in plankton, Limnol. Oceanog., 10 (Suppl.) (1965), R202-R215.

[38]

S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy, Theor. Popul. Biol., 75 (2009), 68-75. doi: 10.1016/j.tpb.2008.11.003.

[39]

P. K Roy, A. N. Chatterjee, D. Greenhalgh and D. Khan, Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal-Real., 14 (2013), 1621-1633. doi: 10.1016/j.nonrwa.2012.10.021.

[40]

S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633-654. doi: 10.1007/BF00161202.

[41]

S. Ruan, Oscillations in plankton models with recycling, J. Theor. Biol., 208 (2001), 15-26.

[42]

A. Sinkkonen, Modelling the effect of autotoxicity on density-dependent phytotoxicity, J. Theor. Biol., 244 (2007), 218-227. doi: 10.1016/j.jtbi.2006.08.003.

[43]

H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Vol. 13 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, U.K., 1995. doi: 10.1017/CBO9780511530043.

[44]

J. Solé, E. García-Ladona, P. Ruardij and M. Estrada, Modelling allelopathy among marine algae, Ecol. Model., 183 (2005), 373-384.

[45]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[46]

H. V. Thurman, Introductory Oceanography, 8th edition, Englewood Cliffs, NJ: Prentice-Hall, 1997. doi: 10.5962/bhl.title.59942.

[47]

R. Whittaker and P. Feeny, Allolechemicals: chemical interactions between species, Sci., 171 (1971), 757-770.

[48]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, J. Appl. Math., 52 (1992), 222-233. doi: 10.1137/0152012.

[49]

R. D. Yang and A. E. Humphrey, Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures, Biotechnol. Bioeng., 17 (1975), 1211-1235.

show all references

References:
[1]

M. An, D. Liu, I. Johnson and J. Lovett, Mathematical modelling of allelopathy. II. The dynamics of allelochemicals from living plants in the environment, Ecol. Model., 161 (2003), 53-66. doi: 10.1016/S0304-3800(02)00289-2.

[2]

H. M. Anderson, V. Hutson and R. Law, On the conditions for persistence of species in ecological communities, Amer. Natur., 139 (1992), 663-668.

[3]

R. Aris and A. E. Humphrey, Dynamics of a chemostat in which two organisms compete for a common substrate, Biotechnol. Bioeng., 19 (1977), 707-723. doi: 10.1002/bit.260190910.

[4]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci., 118 (1993), 127-180. doi: 10.1016/0025-5564(93)90050-K.

[5]

E. Beretta, Bischi and G. F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99-111. doi: 10.1007/BF00171521.

[6]

B. Boon and H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447.

[7]

G. J. Butler and G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167-191. doi: 10.1007/BF00275997.

[8]

G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources, Math. Biosci., 83 (1987), 1-48. doi: 10.1016/0025-5564(87)90002-2.

[9]

S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source- A mathematical study, J. Biol. Syst., 16 (2008), 547-564. doi: 10.1142/S0218339008002654.

[10]

P. Chesson, J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl, R. D. Holt, S. A. Richards, R. M. Nisbet and T. J. Case, The interaction between predation and competition: A review and synthesis, Eco. Let., 5 (2002), 302-315. doi: 10.1038/nature07248.

[11]

A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 6 (1999), 303-339. doi: 10.1006/bulm.1998.0082.

[12]

A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-systems approach, J. Plankton Res., 23 (2001), 389-413.

[13]

J. P. Grover and R. D. Holt, Disentangling resource and apparent competition: Realistic models for plant-herbivore communities, J. Theor. Biol., 191 (1998), 353-376. doi: 10.1006/jtbi.1997.0562.

[14]

T. G. Hallam, On persistence of aquatic ecosystems, In: Anderson, N. R., Zahurance, B. G. (eds). Oceanic Sound Scattering Predication, 1977, 749-765. New York: Plenum.

[15]

T. G. Hallam, Controlled persistence in rudimentary plankton models, In: Avula, J. R. (eds). Math. Model., 4 (1977), 2081-2088. Rolla: University of Missouri Press.

[16]

T. G. Hallam, Structural Sensitivity of grazing formulation in nutrient controlled plankton models, J. Math. Biol., 5 (1978), 261-280. doi: 10.1007/BF00276122.

[17]

S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretical forecast outcomes, Sci., 207 (1980), 1491-1493. doi: 10.1126/science.6767274.

[18]

G. Hardin, The competitive exclusion principle, Sci., New series, 131 (1960), 1292-1297. doi: 10.1126/science.131.3409.1292.

[19]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, Amer. Natur., 144 (1994), 741-771. doi: 10.1086/285705.

[20]

S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383. doi: 10.1137/0132030.

[21]

S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763. doi: 10.1137/0134064.

[22]

S. R. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput. Math. Appl., 49 (2005), 375-378. doi: 10.1016/j.camwa.2004.03.013.

[23]

J. L. Jost, S. F. Drake, A. G. Fredrickson and M. Tsuchiya, Interaction of tetrahymena pyriformis, escherichia, coli, azotobacter vinelandii and glucose in a minimal medium, J. Bacteriol., 113 (1976), 834-840.

[24]

J.-J. Kengwoung-Keumo, Dynamics of two phytoplankton populations under predation, J. Math. Bio. Eng., 11 (2014), 1319-1336. doi: 10.3934/mbe.2014.11.1319.

[25]

J. A. León and D. B. Tumpson, Competition between two species for two complementary or substitutable resources, J. Theor. Biol., 50 (1975), 185-201.

[26]

B. Li and Y. Kuang, Simple Food Chain in a Chemostat with Distinct Removal Rates, J. Math. Anal. Appl., 242 (2000), 75-92. doi: 10.1006/jmaa.1999.6655.

[27]

J. Maynard-Smith, Models in Ecology, Cambridge University Press, 1974.

[28]

R. K. Miller, Nonlinear Volterra Equation, W. A. Benjamin, N.Y., 1971.

[29]

H. Molisch, Der Einfluss Einer Pflanze Auf Die Andere-Allelopathie, Fischer, Jena, 1937.

[30]

J. Monod, Recherche Sur La Croissance Des Cultures Bacteriennes, Hermann et Cie., Paris, 1942.

[31]

B. Mukhopadhyay and R. Bhattacharryya, Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity, Ecol. Model., 198 (2006), 163-173. doi: 10.1016/j.ecolmodel.2006.04.005.

[32]

M. Nakamaru and Y. Iwasa, Competition by allelopathy proceeds in travelling waves: colicin-immune strain aids colicin-sensitive strain, Theor. Popul. Biol., 57 (2000), 131-144.

[33]

L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer, 2001. doi: 10.1007/978-1-4613-0003-8.

[34]

M. J. Piotrowska, U. Foryś and M. Bodnar, A simple model of carcinogenic mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861-872. doi: 10.3934/mbe.2013.10.861.

[35]

D. Rapport, An optimization model of food selection, Amer. Natur., 105 (1971), 575-587. doi: 10.1086/282746.

[36]

E. L. Rice, Allelopathy, Academic Press, Inc. 1984.

[37]

G. A. Riley, A mathematical model of regional variations in plankton, Limnol. Oceanog., 10 (Suppl.) (1965), R202-R215.

[38]

S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy, Theor. Popul. Biol., 75 (2009), 68-75. doi: 10.1016/j.tpb.2008.11.003.

[39]

P. K Roy, A. N. Chatterjee, D. Greenhalgh and D. Khan, Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal-Real., 14 (2013), 1621-1633. doi: 10.1016/j.nonrwa.2012.10.021.

[40]

S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633-654. doi: 10.1007/BF00161202.

[41]

S. Ruan, Oscillations in plankton models with recycling, J. Theor. Biol., 208 (2001), 15-26.

[42]

A. Sinkkonen, Modelling the effect of autotoxicity on density-dependent phytotoxicity, J. Theor. Biol., 244 (2007), 218-227. doi: 10.1016/j.jtbi.2006.08.003.

[43]

H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Vol. 13 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, U.K., 1995. doi: 10.1017/CBO9780511530043.

[44]

J. Solé, E. García-Ladona, P. Ruardij and M. Estrada, Modelling allelopathy among marine algae, Ecol. Model., 183 (2005), 373-384.

[45]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[46]

H. V. Thurman, Introductory Oceanography, 8th edition, Englewood Cliffs, NJ: Prentice-Hall, 1997. doi: 10.5962/bhl.title.59942.

[47]

R. Whittaker and P. Feeny, Allolechemicals: chemical interactions between species, Sci., 171 (1971), 757-770.

[48]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, J. Appl. Math., 52 (1992), 222-233. doi: 10.1137/0152012.

[49]

R. D. Yang and A. E. Humphrey, Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures, Biotechnol. Bioeng., 17 (1975), 1211-1235.

[1]

Hua Nie, Feng-Bin Wang. Competition for one nutrient with recycling and allelopathy in an unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2129-2155. doi: 10.3934/dcdsb.2015.20.2129

[2]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[3]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359

[4]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[5]

Mohamed Dellal, Bachir Bar, Mustapha Lakrib. A competition model in the chemostat with allelopathy and substrate inhibition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2025-2050. doi: 10.3934/dcdsb.2021120

[6]

Juan Li, Yongzhong Song, Hui Wan, Huaiping Zhu. Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences & Engineering, 2017, 14 (2) : 529-557. doi: 10.3934/mbe.2017032

[7]

Jean-Jacques Kengwoung-Keumo. Dynamics of two phytoplankton populations under predation. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1319-1336. doi: 10.3934/mbe.2014.11.1319

[8]

S. R.-J. Jang, J. Baglama, P. Seshaiyer. Intratrophic predation in a simple food chain with fluctuating nutrient. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 335-352. doi: 10.3934/dcdsb.2005.5.335

[9]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[10]

Juping Ji, Lin Wang. Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3073-3081. doi: 10.3934/dcdss.2020135

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure and Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[12]

Zhichao Jiang, Zexian Zhang, Maoyan Jie. Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 691-715. doi: 10.3934/dcdsb.2021061

[13]

Brittni Hall, Xiaoying Han, Peter E. Kloeden, Hans-Werner van Wyk. A nonautonomous chemostat model for the growth of gut microbiome with varying nutrient. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022075

[14]

Sze-Bi Hsu, Feng-Bin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1479-1501. doi: 10.3934/cpaa.2011.10.1479

[15]

Joydeb Bhattacharyya, Samares Pal. Macroalgal allelopathy in the emergence of coral diseases. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 741-762. doi: 10.3934/dcdsb.2017036

[16]

Christopher M. Kribs-Zaleta. Sharpness of saturation in harvesting and predation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 719-742. doi: 10.3934/mbe.2009.6.719

[17]

Christopher K.R.T. Jones, Bevin Maultsby. A dynamical approach to phytoplankton blooms. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 859-878. doi: 10.3934/dcds.2017035

[18]

Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116

[19]

Mohammad A. Tabatabai, Wayne M. Eby, Sejong Bae, Karan P. Singh. A flexible multivariable model for Phytoplankton growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 913-923. doi: 10.3934/mbe.2013.10.913

[20]

Cheng-Feng Hu, Hsiao-Fan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 79-91. doi: 10.3934/naco.2021052

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (200)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]