2016, 13(5): 969-980. doi: 10.3934/mbe.2016025

Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation

1. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada

Received  September 2015 Revised  March 2016 Published  July 2016

A patch-structured multigroup-like $SIS$ epidemiological model is proposed to study the spread of the common bed bug infestation. It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter. Costs associated with the disinfestation process are incorporated into setting up the optimization problems. Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state. Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.
Citation: Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025
References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Springer-Verlag, Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78911-6.

[2]

C. Boase, Bedbugs-back from the brink, Pestic. Outlook, 12 (2001), 159-162. doi: 10.1039/b106301b.

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (eds. O. Arino, D. Axelrod, M. Kimmel, M. Langlais), Wuerz (1995), 33-50.

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010, http://www.cbc.ca/news/canada/new-brunswick/bedbug-outbreaks-hit-saint-john-1.870474 (Lastly accessed on February 09, 2015).

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010, http://www.cbc.ca/news/canada/new-brunswick/saint-john-hospital-hit-by-bed-bugs-1.870475 (Lastly accessed on February 09, 2015).

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., Pacific Bay Resort, Coffs Harbour Australia, (2007), 22-37.

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia, {Westmead Hospital, Department of Medical Entomology}, Australia, 2011.

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options, Clin. Microbiol. Rev. 25 (2012), 164-192. doi: 10.1128/CMR.05015-11.

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control, Environmental Health, 4 (2004), 30-38.

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, Sess. 2A, 2 (2011), 1-24.

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know, Aust. Fam. Physician, 38 (2009), 880-884.

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia, Proc. Sixth Int. Conf. Urban Pests, 6, OOK-Press Kft, Pápai út, Hungary, 37 (2008), 407-425.

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls, Appl. Math. Comput., 190 (2007), 790-803. doi: 10.1016/j.amc.2007.01.079.

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius, Am. Entomol., 52 (2006), 99-101.

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment, Emerg. Infect. Dis., 11 (2005), 533-538. doi: 10.3201/eid1104.041126.

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control, Pest Control, 68 (2000), 58-64.

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects, Math. Biosci., 248 (2014), 97-116. doi: 10.1016/j.mbs.2013.12.006.

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips, Med. Vet. Entomol., 25 (2011), 460-464.

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence, Math. Comput. Simulat., 60 (2002), 107-118. doi: 10.1016/S0378-4754(02)00002-2.

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models, Mathematical Medicine and Biology, 24 (2007), 17-34.

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.), Pest Manag. Sci., 65 (2009), 332-338.

[22]

J. D. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 2002.

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing, BMJ, 320 (2000), 1141-1141. doi: 10.1136/bmj.320.7242.1141.

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model, J. Biol. Dyn., 9 (2014), 45-50. doi: 10.1080/17513758.2014.931474.

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae), J. Med. Entomol., 46 (2009), 1015-1020.

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control, MD: Pinto & Associates, Mechanicsville, ON Canada, 2008.

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae), Annu. Rev. Entomol., 52 (2007), 351-374.

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS Math. Surveys and Monographs, Vol. 41, American Mathematical Society, Providence RI, 1995.

[29]

Statistics Canada, 2011 Census, , (). 

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations, 7th Int. Conf. Urban Pests, Ouro Preto, Brazil, 7 (2011), 319-323.

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence}, Insects, 2 (2011), 83-95. doi: 10.3390/insects2020083.

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes, Appl. Math. Model., 35 (2011), 5442-5447. doi: 10.1016/j.apm.2011.04.035.

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy, Nonlinear Anal. Real World Appl., 10 (2009), 2335-2345. doi: 10.1016/j.nonrwa.2008.04.017.

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. Real World Appl., 11 (2010), 995-1004. doi: 10.1016/j.nonrwa.2009.01.040.

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.

show all references

References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Springer-Verlag, Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78911-6.

[2]

C. Boase, Bedbugs-back from the brink, Pestic. Outlook, 12 (2001), 159-162. doi: 10.1039/b106301b.

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (eds. O. Arino, D. Axelrod, M. Kimmel, M. Langlais), Wuerz (1995), 33-50.

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010, http://www.cbc.ca/news/canada/new-brunswick/bedbug-outbreaks-hit-saint-john-1.870474 (Lastly accessed on February 09, 2015).

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010, http://www.cbc.ca/news/canada/new-brunswick/saint-john-hospital-hit-by-bed-bugs-1.870475 (Lastly accessed on February 09, 2015).

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., Pacific Bay Resort, Coffs Harbour Australia, (2007), 22-37.

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia, {Westmead Hospital, Department of Medical Entomology}, Australia, 2011.

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options, Clin. Microbiol. Rev. 25 (2012), 164-192. doi: 10.1128/CMR.05015-11.

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control, Environmental Health, 4 (2004), 30-38.

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, Sess. 2A, 2 (2011), 1-24.

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know, Aust. Fam. Physician, 38 (2009), 880-884.

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia, Proc. Sixth Int. Conf. Urban Pests, 6, OOK-Press Kft, Pápai út, Hungary, 37 (2008), 407-425.

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls, Appl. Math. Comput., 190 (2007), 790-803. doi: 10.1016/j.amc.2007.01.079.

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius, Am. Entomol., 52 (2006), 99-101.

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment, Emerg. Infect. Dis., 11 (2005), 533-538. doi: 10.3201/eid1104.041126.

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control, Pest Control, 68 (2000), 58-64.

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects, Math. Biosci., 248 (2014), 97-116. doi: 10.1016/j.mbs.2013.12.006.

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips, Med. Vet. Entomol., 25 (2011), 460-464.

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence, Math. Comput. Simulat., 60 (2002), 107-118. doi: 10.1016/S0378-4754(02)00002-2.

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models, Mathematical Medicine and Biology, 24 (2007), 17-34.

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.), Pest Manag. Sci., 65 (2009), 332-338.

[22]

J. D. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 2002.

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing, BMJ, 320 (2000), 1141-1141. doi: 10.1136/bmj.320.7242.1141.

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model, J. Biol. Dyn., 9 (2014), 45-50. doi: 10.1080/17513758.2014.931474.

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae), J. Med. Entomol., 46 (2009), 1015-1020.

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control, MD: Pinto & Associates, Mechanicsville, ON Canada, 2008.

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae), Annu. Rev. Entomol., 52 (2007), 351-374.

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS Math. Surveys and Monographs, Vol. 41, American Mathematical Society, Providence RI, 1995.

[29]

Statistics Canada, 2011 Census, , (). 

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations, 7th Int. Conf. Urban Pests, Ouro Preto, Brazil, 7 (2011), 319-323.

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence}, Insects, 2 (2011), 83-95. doi: 10.3390/insects2020083.

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes, Appl. Math. Model., 35 (2011), 5442-5447. doi: 10.1016/j.apm.2011.04.035.

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy, Nonlinear Anal. Real World Appl., 10 (2009), 2335-2345. doi: 10.1016/j.nonrwa.2008.04.017.

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. Real World Appl., 11 (2010), 995-1004. doi: 10.1016/j.nonrwa.2009.01.040.

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.

[1]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[2]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[3]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[4]

Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics and Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009

[5]

Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007

[6]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6229-6252. doi: 10.3934/dcdsb.2021016

[7]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[8]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[9]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[10]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[11]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[12]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[13]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks and Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[14]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[15]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 127-142. doi: 10.3934/naco.2019043

[16]

Shuang Zhao. Resource allocation flowshop scheduling with learning effect and slack due window assignment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2817-2835. doi: 10.3934/jimo.2020096

[17]

Ji-Bo Wang, Dan-Yang Lv, Shi-Yun Wang, Chong Jiang. Resource allocation scheduling with deteriorating jobs and position-dependent workloads. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022011

[18]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[19]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[20]

Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1985-1997. doi: 10.3934/dcdsb.2020012

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (294)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]