Advanced Search
Article Contents
Article Contents

Type-dependent stochastic Ising model describing the dynamics of a non-symmetric feedback module

Abstract Related Papers Cited by
  • We study an alternative approach to model the dynamical behaviors of biological feedback loop, that is, a type-dependent spin system, this class of stochastic models was introduced by Fernández et. al [13], and are useful since take account to inherent variability of gene expression. We analyze a non-symmetric feedback module being an extension for the repressilator, the first synthetic biological oscillator, invented by Elowitz and Leibler [7]. We consider a mean-field dynamics for a type-dependent Ising model, and then study the empirical-magnetization vector representing concentration of molecules. We apply a convergence result from stochastic jump processes to deterministic trajectories and present a bifurcation analysis for the associated dynamical system. We show that non-symmetric module under study can exhibit very rich behaviours, including the empirical oscillations described by repressilator.
    Mathematics Subject Classification: Primary: 82C22, 60J75; Secondary: 37N25.


    \begin{equation} \\ \end{equation}
  • [1]

    U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, CRC Press, Boca Raton, 2007.


    U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet., 8 (2007), 450-461.doi: 10.1038/nrg2102.


    F. Blanchini, E. Franco and G. Giordano, A Structural Classification of Candidate Oscillatory and Multistationary Biochemical Systems, Bull. Math. Bio., 76 (2014), 2542-2569.doi: 10.1007/s11538-014-0023-y.


    L. Chen and K. Aihara, Stability of genetic regulatory networks with time delay, IEEE T. Circuits-I, 49 (2002), 602-608.doi: 10.1109/TCSI.2002.1001949.


    L. Chen, R. Wang, T. Kobayashi and K. Aihara, Dynamics of gene regulatory networks with cell division cycles, Phys. Rev. E, 70 (2004), 011909, 13 pp.doi: 10.1103/PhysRevE.70.011909.


    X. Descombes and E. Zhizhina, The Gibbs fields approach and related dynamics in image processing, Condensed Matter Physics, 11 (2008), 293-312.doi: 10.5488/CMP.11.2.293.


    M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335-338.


    M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.doi: 10.1126/science.1070919.


    A. C. D. van Enter, R. Fernández, F. den Hollander and F. Redig, Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures, Commun. Math. Phys., 226 (2002), 101-130.doi: 10.1007/s002200200605.


    B. Ermentrout and J. Rinzel, XPPAUT: X-Windows PhasePlane plus Auto, Computational Systems Neurobiology, (2012), 519-531, http://www.math.pitt.edu/ bard/xpp/xpp.htmldoi: 10.1007/978-94-007-3858-4_17.


    S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.doi: 10.1002/9780470316658.


    T. d'Eysmond and F. Naef, Systems biology and modeling of circadian rhythms, in The Circadian Clock (ed. U. Albrecht), Springer-Verlag, New York, 12 (2009), 283-293.doi: 10.1007/978-1-4419-1262-6_11.


    R. Fernández, L. R. Fontes and E. J. Neves, Density-profile processes describing biological signaling networks: Almost sure convergence to deterministic trajectories, J. Stat. Phys., 136 (2009), 875-901.doi: 10.1007/s10955-009-9819-9.


    C. Godrèche, Rates for irreversible Gibbsian Ising models, J. Stat. Mech-Theory E., (2013), P05011, 30pp.


    C. Godrèche and A. J. Bray, Nonequilibrium stationary states and phase transitions in directed Ising models, J. Stat. Mech-Theory E., (2009), P12016.


    E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Physik, 31 (1925), 253-258.doi: 10.1007/BF02980577.


    R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model, J. Stat. Phys., 70 (1993), 1121-1148.doi: 10.1007/BF01049425.


    C. Kulske and A. Le Ny, Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry, Commun. Math. Phys., 271 (2007), 431-454.doi: 10.1007/s00220-007-0201-y.


    T. G. Kurtz, Approximation of Population Processes, SIAM, Philadelphia, 1981.


    Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third Edition. Springer, New York, 2004.doi: 10.1007/978-1-4757-3978-7.


    M. C. A. Leite and Y. Wang, Multistability, oscillations and bifurcations in feedback loops, Math. Biosc. and Eng., 7 (2010), 83-97.doi: 10.3934/mbe.2010.7.83.


    T. M. Liggett, Interacting Particle Systems, Springer, Berlin, 1985.doi: 10.1007/978-1-4613-8542-4.


    J. R. G Mendonça and M. J. de Oliveira, Type-dependent irreversible stochastic spin models for genetic regulatory networks at the level of promotion-inhibition circuitry, Physica. A, 440 (2015), 33-41.doi: 10.1016/j.physa.2015.08.001.


    A. Y. Mitrophanov and E. A. Groisman, Positive feedback in cellular control systems, Bioessays, 30 (2008), 542-555.doi: 10.1002/bies.20769.


    M. J. de Oliveira, Irreversible models with Boltzmann-Gibbs probability distribution and entropy production, J. Stat. Mech-Theory E., (2011), P12012. Erratum J. Stat. Mech-Theory E. (2013), E04001.


    E. Olivieri and M. E. Vares, Large Deviations and Metastability, Cambridge University Press, New York, 2005.doi: 10.1017/CBO9780511543272.


    L. Perko, Differential Equations and Dynamical Systems, Third Edition. Springer, New York, 2001.doi: 10.1007/978-1-4613-0003-8.


    N. Radde, The role of feedback mechanisms in biological network models - A tutorial, Asian J. Control, 13 (2011), 597-610.doi: 10.1002/asjc.376.


    D. A. Rand, B. V. Shulgin, D. Salazar and A. J. Millar, Design principles underlying circadian clocks, J. Roy. Soc. Interface, 1 (2004), 119-130.


    E. Schneidman, M. J. II Berry, R. Segev and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440 (2006), 1007-1012.doi: 10.1038/nature04701.


    V. Shahrezaei and P. S. Swain, The stochastic nature of biochemical networks, Curr. Opin. Biotech., 19 (2008), 369-374.doi: 10.1016/j.copbio.2008.06.011.


    E. D. Sontag, Some new directions in control theory inspired by systems biology, Systems Biol., 1 (2004), 9-18.doi: 10.1049/sb:20045006.


    P. S. Swain, M. B. Elowitz and E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, P. Natl. Acad. Sci. USA, 99 (2002), 12795-12800.doi: 10.1073/pnas.162041399.


    H. Thorisson, Coupling, Stationarity and Regeneration, First Edition. Probability and its Applications, Springer, New York, 2001.


    R. Toussaint and S. R. Pride, Interacting damage models mapped onto Ising and percolation models, Phys. Rev. E, 71 (2005), 046127.doi: 10.1103/PhysRevE.71.046127.


    J. Tyson and B. Novak, Functional motifs in biochemical reaction networks, Annu. Rev. Phys. Chem., 61 (2010), 219-240.doi: 10.1146/annurev.physchem.012809.103457.


    R. Wang, Z. Jing and L. Chen, Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems, B. Math. Biol., 67 (2005), 339-367.doi: 10.1016/j.bulm.2004.07.005.


    R. Wang, X.-M. Zhao and Z. Liu, Modeling and dynamical analysis of molecular networks, in Complex Sciences (ed. J. Zhou), Springer Berlin Heidelberg, 5 (2009), 2139-2148.doi: 10.1007/978-3-642-02469-6_90.

  • 加载中

Article Metrics

HTML views() PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint