-
Previous Article
Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization
- MBE Home
- This Issue
-
Next Article
Mathematical methods in systems biology
Classification of Alzheimer's disease using unsupervised diffusion component analysis
1. | Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, United States |
2. | Department of Mathematics, University of California, Davis, United States |
References:
[1] |
, Alzheimer's Association: Alzheimer's disease facts and figures., Alzheimer's & Dementia, 9 (2013), 208.
|
[2] |
N. Ahmed, T. Natarajan and K. R. Rao, Discrete cosine transform, IEEE Transactions on Computers, 23 (1974), 90-93.
doi: 10.1109/T-C.1974.223784. |
[3] |
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[4] |
D. Duncan, R. Talmon, H. P. Zaveri and R. R. Coifman, Identifying preseizure state in intracranial EEG data using diffusion kernels, Math Biosci Eng, 10 (2013), 579-590.
doi: 10.3934/mbe.2013.10.579. |
[5] |
C. Habeck and Y. Stern, Alzheimer's disease neuroimaging initiative, Multivariate data analysis for neuroimaging data: Overview and application to Alzheimer's disease, Cell Biochem Biophys., 58 (2010), 53-67. |
[6] |
P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli and J.-P. Thiran, Mapping human whole-brain structural networks with diffusion MRI, PLoS ONE, 2 (2007), e597.
doi: 10.1371/journal.pone.0000597. |
[7] |
P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS Biol, 6 (2008), e159.
doi: 10.1371/journal.pbio.0060159. |
[8] |
S. Norton, F. E. Matthews, D. Barnes, K. Yaffe and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, Lancet Neurology, 13 (2014), 788-794.
doi: 10.1016/S1474-4422(14)70136-X. |
[9] |
C. Syms, Principal components analysis, Reference Module in Earth Systems and Environmental Sciences Encyclopedia of Ecology, (2008), 2940-2949.
doi: 10.1016/B978-008045405-4.00538-3. |
[10] |
R. C. Petersen, Mild cognitive impairment clinical trials, Nature Reviews Drug Discovery, 2 (2003), 646-653.
doi: 10.1038/nrd1155. |
[11] |
Y. Rubner, C. Tomasi and L. J. Guibas, A metric for distributions with applications to image databases, IEEE 6th International Conference on Computer Vision, (1998), 59-66.
doi: 10.1109/ICCV.1998.710701. |
[12] |
R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, PNAS, (2012), 1-14. |
[13] |
R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Transactions on Signal Processing, 60 (2012), 1159-1173.
doi: 10.1109/TSP.2011.2177973. |
[14] |
W. Yang, R. L. Lui, J. H. Gao, T. F. Chan, S. T. Yau, R. A. Sperling and X. Huang, Independent component analysis-based classification of Alzheimer's disease MRI data, J. Alzheimers Dis, 24 (2011), 775-783. |
[15] |
J. Ye, M. Farnum, E. Yang, R. Verbeeck, V. Lobanov, N. Raghavan, G. Novak, A. DiBernardo and V. A. Narayan, Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data, BMC Neurology, 12 (2012), 1-12. |
show all references
References:
[1] |
, Alzheimer's Association: Alzheimer's disease facts and figures., Alzheimer's & Dementia, 9 (2013), 208.
|
[2] |
N. Ahmed, T. Natarajan and K. R. Rao, Discrete cosine transform, IEEE Transactions on Computers, 23 (1974), 90-93.
doi: 10.1109/T-C.1974.223784. |
[3] |
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[4] |
D. Duncan, R. Talmon, H. P. Zaveri and R. R. Coifman, Identifying preseizure state in intracranial EEG data using diffusion kernels, Math Biosci Eng, 10 (2013), 579-590.
doi: 10.3934/mbe.2013.10.579. |
[5] |
C. Habeck and Y. Stern, Alzheimer's disease neuroimaging initiative, Multivariate data analysis for neuroimaging data: Overview and application to Alzheimer's disease, Cell Biochem Biophys., 58 (2010), 53-67. |
[6] |
P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli and J.-P. Thiran, Mapping human whole-brain structural networks with diffusion MRI, PLoS ONE, 2 (2007), e597.
doi: 10.1371/journal.pone.0000597. |
[7] |
P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS Biol, 6 (2008), e159.
doi: 10.1371/journal.pbio.0060159. |
[8] |
S. Norton, F. E. Matthews, D. Barnes, K. Yaffe and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, Lancet Neurology, 13 (2014), 788-794.
doi: 10.1016/S1474-4422(14)70136-X. |
[9] |
C. Syms, Principal components analysis, Reference Module in Earth Systems and Environmental Sciences Encyclopedia of Ecology, (2008), 2940-2949.
doi: 10.1016/B978-008045405-4.00538-3. |
[10] |
R. C. Petersen, Mild cognitive impairment clinical trials, Nature Reviews Drug Discovery, 2 (2003), 646-653.
doi: 10.1038/nrd1155. |
[11] |
Y. Rubner, C. Tomasi and L. J. Guibas, A metric for distributions with applications to image databases, IEEE 6th International Conference on Computer Vision, (1998), 59-66.
doi: 10.1109/ICCV.1998.710701. |
[12] |
R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, PNAS, (2012), 1-14. |
[13] |
R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Transactions on Signal Processing, 60 (2012), 1159-1173.
doi: 10.1109/TSP.2011.2177973. |
[14] |
W. Yang, R. L. Lui, J. H. Gao, T. F. Chan, S. T. Yau, R. A. Sperling and X. Huang, Independent component analysis-based classification of Alzheimer's disease MRI data, J. Alzheimers Dis, 24 (2011), 775-783. |
[15] |
J. Ye, M. Farnum, E. Yang, R. Verbeeck, V. Lobanov, N. Raghavan, G. Novak, A. DiBernardo and V. A. Narayan, Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data, BMC Neurology, 12 (2012), 1-12. |
[1] |
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057 |
[2] |
Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems and Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625 |
[3] |
Dmitry Pozharskiy, Noah J. Wichrowski, Andrew B. Duncan, Grigorios A. Pavliotis, Ioannis G. Kevrekidis. Manifold learning for accelerating coarse-grained optimization. Journal of Computational Dynamics, 2020, 7 (2) : 511-536. doi: 10.3934/jcd.2020021 |
[4] |
Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems and Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565 |
[5] |
Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012 |
[6] |
Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021 doi: 10.3934/fods.2021008 |
[7] |
Elie Bretin, Imen Mekkaoui, Jérôme Pousin. Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula. Inverse Problems and Imaging, 2018, 12 (1) : 125-152. doi: 10.3934/ipi.2018005 |
[8] |
Baohuai Sheng, Huanxiang Liu, Huimin Wang. Learning rates for the kernel regularized regression with a differentiable strongly convex loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3973-4005. doi: 10.3934/cpaa.2020176 |
[9] |
Jake Bouvrie, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1&2) : 1-19. doi: 10.3934/jcd.2017001 |
[10] |
Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027 |
[11] |
Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015 |
[12] |
Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775 |
[13] |
Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic and Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037 |
[14] |
Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043 |
[15] |
Ying Lin, Rongrong Lin, Qi Ye. Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm. Mathematical Foundations of Computing, 2020, 3 (3) : 205-218. doi: 10.3934/mfc.2020020 |
[16] |
Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009 |
[17] |
Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285 |
[18] |
Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033 |
[19] |
Jianlu Zhang. Suspension of the billiard maps in the Lazutkin's coordinate. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2227-2242. doi: 10.3934/dcds.2017096 |
[20] |
Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]