
-
Previous Article
Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic
- MBE Home
- This Issue
-
Next Article
Controlling imported malaria cases in the United States of America
On application of optimal control to SEIR normalized models: Pros and cons
1. | SYSTEC, DEEC, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200–465 Porto, Portugal |
2. | CTAC, Departamento de Engenharia Civil, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal |
In this work we normalize a SEIR model that incorporates exponential natural birth and death, as well as disease-caused death. We use optimal control to control by vaccination the spread of a generic infectious disease described by a normalized model with $L^1$ cost. We discuss the pros and cons of SEIR normalized models when compared with classical models when optimal control with $L^1$ costs are considered. Our discussion highlights the role of the cost. Additionally, we partially validate our numerical solutions for our optimal control problem with normalized models using the Maximum Principle.
References:
[1] |
M. Biswas, L. Paiva and M. de Pinho,
A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[2] |
F. Brauer and C. Castillo-Chavez,
Mathematical Models in Population Biology and Epidemiology Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[3] |
C. Buskens and D. Wassel,
The ESA NLP solver WORHP, Modeling and optimization in space engineering, Springer Optim. Appl., Springer, New York, 73 (2013), 85-110.
doi: 10.1007/978-1-4614-4469-5_4. |
[4] |
V. Capasso,
Mathematical Structures of Epidemic Systems Springer-Verlag, Berlin Heidelberg, 2008. |
[5] |
F. Clarke,
Optimization and Nonsmooth Analysis John Wiley & Sons, New York, 1983. |
[6] |
M. de Pinho, I. Kornienko and H. Maurer,
Optimal control of a SEIR model with mixed constraints and $L^1$ cost, Springer International Publishing, Switzerland, Lecture Notes in Electrical Engineering, 312 (2015), 135-145.
|
[7] |
R. Fourer, D. Gay and B. Kernighan,
AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks–Cole Publishing Company, USA, (1993).
|
[8] |
A. Friedman and C. Kao,
Mathematical Modeling of Biological Processes Springer, Switzerland, 2014.
doi: 10.1007/978-3-319-08314-8. |
[9] |
H. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[10] |
H. Hethcote,
The basic epidemiology models: Models, expressions for $r_0$, parameter estimation, and applications, Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 16 (2009), 1-61.
doi: 10.1142/9789812834836_0001. |
[11] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A Containing papers of a Mathematical and Physical Nature, 115. |
[12] |
A. Korobeinikov, E. V. Grigorieva and E. N. Khailov,
Optimal control for an epidemic in a population of varying size, Discrete Contin. Dyn. Syst., (2015), 549-561.
doi: 10.3934/proc.2015.0549. |
[13] |
U. Ledzewicz and H. Schaettler,
On optimal singular controls for a general sir-model with vaccination and treatment supplement, Discrete and Continuous Dynamical Systems, Series B, 2 (2011), 981-990.
|
[14] |
M. Y. Li, J. R. Graef, L. Wang and J. Karsai,
Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[15] |
H. Maurer, C. Buskens, J.-H. R. Kim and C. Y. Kaya,
Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2015), 129-156.
doi: 10.1002/oca.756. |
[16] |
H. Maurer and M. R. de Pinho, Optimal control of seir models in epidemiology with l$^1$ objectives, https://hal.inria.fr/hal-01101291/file/Maurer-dePinho-SEIR.pdf. (Accepted) |
[17] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[18] |
K. Okosun, O. Rachid and N. Marcus,
Optimal control strategies and cost-effectiveness analysis of a malaria model, Biosystems, 111 (2013), 83-101.
doi: 10.1016/j.biosystems.2012.09.008. |
[19] |
N P. Osmolovskii and H. Maurer,
Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, 24 SIAM Publications, Philadelphia, 2012.
doi: 10.1137/1.9781611972368. |
[20] |
H. Schaettler and U. Ledzewicz,
Geometric Optimal Control. Theory, Methods and Examples Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[21] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
show all references
References:
[1] |
M. Biswas, L. Paiva and M. de Pinho,
A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[2] |
F. Brauer and C. Castillo-Chavez,
Mathematical Models in Population Biology and Epidemiology Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[3] |
C. Buskens and D. Wassel,
The ESA NLP solver WORHP, Modeling and optimization in space engineering, Springer Optim. Appl., Springer, New York, 73 (2013), 85-110.
doi: 10.1007/978-1-4614-4469-5_4. |
[4] |
V. Capasso,
Mathematical Structures of Epidemic Systems Springer-Verlag, Berlin Heidelberg, 2008. |
[5] |
F. Clarke,
Optimization and Nonsmooth Analysis John Wiley & Sons, New York, 1983. |
[6] |
M. de Pinho, I. Kornienko and H. Maurer,
Optimal control of a SEIR model with mixed constraints and $L^1$ cost, Springer International Publishing, Switzerland, Lecture Notes in Electrical Engineering, 312 (2015), 135-145.
|
[7] |
R. Fourer, D. Gay and B. Kernighan,
AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks–Cole Publishing Company, USA, (1993).
|
[8] |
A. Friedman and C. Kao,
Mathematical Modeling of Biological Processes Springer, Switzerland, 2014.
doi: 10.1007/978-3-319-08314-8. |
[9] |
H. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[10] |
H. Hethcote,
The basic epidemiology models: Models, expressions for $r_0$, parameter estimation, and applications, Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 16 (2009), 1-61.
doi: 10.1142/9789812834836_0001. |
[11] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A Containing papers of a Mathematical and Physical Nature, 115. |
[12] |
A. Korobeinikov, E. V. Grigorieva and E. N. Khailov,
Optimal control for an epidemic in a population of varying size, Discrete Contin. Dyn. Syst., (2015), 549-561.
doi: 10.3934/proc.2015.0549. |
[13] |
U. Ledzewicz and H. Schaettler,
On optimal singular controls for a general sir-model with vaccination and treatment supplement, Discrete and Continuous Dynamical Systems, Series B, 2 (2011), 981-990.
|
[14] |
M. Y. Li, J. R. Graef, L. Wang and J. Karsai,
Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[15] |
H. Maurer, C. Buskens, J.-H. R. Kim and C. Y. Kaya,
Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2015), 129-156.
doi: 10.1002/oca.756. |
[16] |
H. Maurer and M. R. de Pinho, Optimal control of seir models in epidemiology with l$^1$ objectives, https://hal.inria.fr/hal-01101291/file/Maurer-dePinho-SEIR.pdf. (Accepted) |
[17] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[18] |
K. Okosun, O. Rachid and N. Marcus,
Optimal control strategies and cost-effectiveness analysis of a malaria model, Biosystems, 111 (2013), 83-101.
doi: 10.1016/j.biosystems.2012.09.008. |
[19] |
N P. Osmolovskii and H. Maurer,
Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, 24 SIAM Publications, Philadelphia, 2012.
doi: 10.1137/1.9781611972368. |
[20] |
H. Schaettler and U. Ledzewicz,
Geometric Optimal Control. Theory, Methods and Examples Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[21] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |









Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
[1] |
Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093 |
[2] |
Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 1-20. doi: 10.3934/mbe.2018001 |
[3] |
Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006 |
[4] |
Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013 |
[5] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[6] |
Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1 |
[7] |
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002 |
[8] |
Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485 |
[9] |
M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761 |
[10] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[11] |
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559 |
[12] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[13] |
Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022 |
[14] |
Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101 |
[15] |
Yan Zhang, Yonghong Wu, Haixiang Yao. Optimal health insurance with constraints under utility of health, wealth and income. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1519-1540. doi: 10.3934/jimo.2021031 |
[16] |
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323 |
[17] |
Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003 |
[18] |
Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445 |
[19] |
Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019 |
[20] |
Christine Burggraf, Wilfried Grecksch, Thomas Glauben. Stochastic control of individual's health investments. Conference Publications, 2015, 2015 (special) : 159-168. doi: 10.3934/proc.2015.0159 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]