January  2017, 14(1): 263-275. doi: 10.3934/mbe.2017017

Sufficient optimality conditions for a class of epidemic problems with control on the boundary

Faculty of Math and Computer Sciences, University of Lodz, Banacha 22, 90-238 Lodz, Poland

Received  October 22, 2015 Accepted  April 22, 2016 Published  October 2016

In earlier paper of V. Capasso et al it is considered a simply model of controlling an epidemic, which is described by three functionals and systems of two PDE equations having the feedback operator on the boundary. Necessary optimality conditions and two gradient-type algorithms are derived. This paper constructs dual dynamic programming method to derive sufficient optimality conditions for optimal solution as well $\varepsilon $-optimality conditions in terms of dual dynamic inequalities. Approximate optimality and numerical calculations are presented too.

Citation: Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017
References:
[1]

V. ArnautuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.  doi: 10.1007/BF01447658.

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces Science+Business Media, Springer 2012. doi: 10.1007/978-94-007-2247-7.

[3]

V. Capasso, Mathematical Structures of Epidemic Systems Lect. Notes in Biomath., 97 Springer 2008.

[4]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450. 

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.  doi: 10.1080/01630560600698160.

[6]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.

[7]

A. Miniak-Górecka, Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems PhD thesis, 2015.

[8]

A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.  doi: 10.1090/S0002-9939-1992-1102860-3.

[9]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.  doi: 10.1137/050644008.

[10]

I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.  doi: 10.1080/02331930903104390.

[11]

A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.  doi: 10.3934/cpaa.2012.11.2473.

show all references

References:
[1]

V. ArnautuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.  doi: 10.1007/BF01447658.

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces Science+Business Media, Springer 2012. doi: 10.1007/978-94-007-2247-7.

[3]

V. Capasso, Mathematical Structures of Epidemic Systems Lect. Notes in Biomath., 97 Springer 2008.

[4]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450. 

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.  doi: 10.1080/01630560600698160.

[6]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.

[7]

A. Miniak-Górecka, Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems PhD thesis, 2015.

[8]

A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.  doi: 10.1090/S0002-9939-1992-1102860-3.

[9]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.  doi: 10.1137/050644008.

[10]

I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.  doi: 10.1080/02331930903104390.

[11]

A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.  doi: 10.3934/cpaa.2012.11.2473.

[1]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[2]

Bhawna Kohli. Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3209-3221. doi: 10.3934/jimo.2020114

[3]

Nazih Abderrazzak Gadhi. A note on the paper "Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem". Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021103

[4]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[5]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics and Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[6]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[7]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial and Management Optimization, 2020, 16 (2) : 623-631. doi: 10.3934/jimo.2018170

[8]

Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022064

[9]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[10]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[11]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[12]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[13]

Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure and Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167

[14]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[15]

Shu-Cherng Fang, David Y. Gao, Ruey-Lin Sheu, Soon-Yi Wu. Canonical dual approach to solving 0-1 quadratic programming problems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 125-142. doi: 10.3934/jimo.2008.4.125

[16]

Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial and Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723

[17]

Gianni Di Pillo, Giampaolo Liuzzi, Stefano Lucidi. A primal-dual algorithm for nonlinear programming exploiting negative curvature directions. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 509-528. doi: 10.3934/naco.2011.1.509

[18]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188

[19]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[20]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (38)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]