[1]
|
R. Bellmann and K. L. Cooke,
Differential-Difference Equations Academic Press, New York, 1963.
|
[2]
|
B. Buonomo and M. Cerasuolo, The effect of time delay in plant-pathogen interactions with host demography, Math. Biosci. Eng., 12 (2015), 473-490.
doi: 10.3934/mbe.2015.12.473.
|
[3]
|
C. Büskens,
Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen PhD thesis, Institut für Numerische Mathematik, Universität Münster, Germany, 1998.
|
[4]
|
C. Büskens and H. Maurer, SQP methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control, J. Comput. Appl. Math., 120 (2000), 85-108.
doi: 10.1016/S0377-0427(00)00305-8.
|
[5]
|
C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997), 629-656.
doi: 10.1007/s002850050069.
|
[6]
|
T. Cohen and M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nat. Med., 10 (2004), 1117-1121.
doi: 10.1038/nm1110.
|
[7]
|
R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000), 27-39.
doi: 10.1016/S0025-5564(00)00006-7.
|
[8]
|
J. Dieudonné,
Foundations of Modern Analysis Academic Press, New York, 1960.
|
[9]
|
R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, (1993).
|
[10]
|
L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Special Issue on Computational Methods for Optimization and Control, J. Ind. Manag. Optim., 10 (2014), 413-441.
doi: 10.3934/jimo.2014.10.413.
|
[11]
|
M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, J. Theoret. Biol., 248 (2007), 608-617.
doi: 10.1016/j.jtbi.2007.06.005.
|
[12]
|
J. K. Hale and S. M. V. Lunel,
Introduction to Functional Differential Equations Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[13]
|
H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.
|
[14]
|
Y. Kuang,
Delay Differential Equations with Applications in Population Dynamics Academic Press, San Diego, 1993.
|
[15]
|
M. L. Lambert and P. Van der Stuyft, Delays to tuberculosis treatment: Shall we continue to blame the victim?, Trop. Med. Int. Health, 10 (2005), 945-946.
doi: 10.1111/j.1365-3156.2005.01485.x.
|
[16]
|
H. Maurer, C. Büskens, J.-H. R. Kim and Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Appl. Methods, 26 (2005), 129-156.
doi: 10.1002/oca.756.
|
[17]
|
N. P. Osmolovskii and H. Maurer,
Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012.
doi: 10.1137/1.9781611972368.
|
[18]
|
P. Rodrigues, C. Rebelo and M. G. M. Gomes, Drug resistance in tuberculosis: A reinfection model, Theor. Popul. Biol., 71 (2007), 196-212.
doi: 10.1016/j.tpb.2006.10.004.
|
[19]
|
P. Rodrigues, C. J. Silva and D. F. M. Torres, Cost-effectiveness analysis of optimal control measures for tuberculosis, Bull. Math. Biol., 76 (2014), 2627-2645.
doi: 10.1007/s11538-014-0028-6.
|
[20]
|
H. Schättler, U. Ledzewicz and H. Maurer, Sufficient conditions for strong local optimality in optimal control problems with $L^2$-type objectives and control constraints, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657.
|
[21]
|
L. F. Shampine and S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001), 441-458.
doi: 10.1016/S0168-9274(00)00055-6.
|
[22]
|
C. J. Silva and D. F. M. Torres, Optimal control strategies for tuberculosis treatment: A case study in Angola, Numer. Algebra Control Optim., 2 (2012), 601-617.
doi: 10.3934/naco.2012.2.601.
|
[23]
|
C. J. Silva and D. F. M. Torres, Optimal Control of Tuberculosis: A Review, Dynamics, Games and Science, CIM Series in Mathematical Sciences, 1 (2015), 701-722.
doi: 10.1007/978-3-319-16118-1_37.
|
[24]
|
C. T. Sreeramareddy, K. V. Panduru, J. Menten and J. Van den Ende, Time delays in diagnosis of pulmonary tuberculosis: A systematic review of literature BMC Infectious Diseases 9 (2009), p91.
doi: 10.1186/1471-2334-9-91.
|
[25]
|
D. G. Storla, S. Yimer and G. A. Bjune, A systematic review of delay in the diagnosis and treatment of tuberculosis BMC Public Health 8 (2008), p15.
doi: 10.1186/1471-2458-8-15.
|
[26]
|
K. Toman, Tuberculosis case-finding and chemotherapy: Questions and answers, WHO Geneva, 1979.
|
[27]
|
P. W. Uys, M. Warren and P. D. van Helden, A threshold value for the time delay to TB diagnosis PLoS ONE 2(2007), e757.
doi: 10.1371/journal.pone.0000757.
|
[28]
|
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[29]
|
H. Yang and J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1573-1582.
doi: 10.3934/dcdsb.2015.20.1573.
|
[30]
|
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[31]
|
Systematic Screening for Active Tuberculosis --Principles and Recommendations Geneva, World Health Organization, 2013, http://www.who.int/tb/tbscreening/en/.
|
[32]
|
Global Tuberculosis Report 2014 Geneva, World Health Organization, 2014, http://www.who.int/tb/publications/global_report/en/.
|
[33]
|
Centers for Disease and Control Prevention
http://www.cdc.gov/tb/topic/treatment/ltbi.htm
|