[1]
|
B. M. Adams, H. T. Banks, H. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Mathematical Biosciences and Engineering, 1 (2004), 223-241.
doi: 10.3934/mbe.2004.1.223.
|
[2]
|
F. B. Agusto, Optimal chemoprophylaxis and treatment control strategies of a tuberculosis transmission model, World Journal of Modelling and Simulation, 5 (2009), 163-173.
|
[3]
|
F. B. Agusto and K. O. Okosun, Optimal seasonal biocontrol for Eichhornia crassipes, International Journal of Biomathematics, 3 (2010), 383-397.
doi: 10.1142/S1793524510001021.
|
[4]
|
R. M. Anderson and R. M. May,
Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991, Oxford.
|
[5]
|
K. W. Blayneh, Y. Cao and H. D. Kwon, Optimal control of vector-borne diseases: Treatment and Prevention, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 587-611.
doi: 10.3934/dcdsb.2009.11.587.
|
[6]
|
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 1-15.
|
[7]
|
C. Castillo-Chavez and B. Song, Dynamical model of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.
doi: 10.3934/mbe.2004.1.361.
|
[8]
|
Z. Chen, L. Zou, D. Shen, W. Zhang and S. Ruan, Mathematical modelling and control of Schistosomiasis in Hubei Province, China, Acta Tropica, 115 (2010), 119-125.
|
[9]
|
E. T. Chiyaka, G. Magombedze and L. Mutimbu, Modelling within host parasite dynamics of schistosomiasis, Comp. Math. Meth. Med., 11 (2010), 255-280.
doi: 10.1080/17486701003614336.
|
[10]
|
J. A. Clennon, C. G. King, E. M. Muchiri and U. Kitron, Hydrological modelling of snail dispersal patterns in Msambweni, Kenya and potential resurgence of Schistosoma haematobium transmission, Parasitology, 134 (2007), 683-693.
|
[11]
|
S. Doumbo, T. M. Tran, J. Sangala, S. Li and D. Doumtabe, et al., Co-infection of long-term
carriers of Plasmodium falciparum with Schistosoma haematobium enhances protection from
febrile malaria: A prospective cohort study in Mali, PLoS Negl. Trop. Dis., 8 (2014), e3154.
|
[12]
|
M. Finkel, Malaria: Stopping a Global Killer, National Geographic, July 2007.
|
[13]
|
Z. Feng, A. Eppert, F. A. Milner and D. J. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes, Appl. Math. Lett., 17 (2004), 1105-1112.
doi: 10.1016/j.aml.2004.02.002.
|
[14]
|
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975.
|
[15]
|
J. H. Ge, S. Q. Zhang, T. P. Wang, G. Zhang, C. Tao, D. Lu, Q. Wang and W. Wu, Effects of flood on the prevalence of schistosomiasis in Anhui province in 1998, Journal of Tropical Diseases and Parasitology, 2 (2004), 131-134.
|
[16]
|
P. J. Hotez, D. H. Molyneux, A. Fenwick and E. Ottesen, Ehrlich and S. Sachs et al., Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS,
tuberculosis, and malaria, PLoS Med., 3 (2006), e102.
|
[17]
|
M. Y. Hyun, Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water, Mathematical Biosciences, 184 (2003), 1-26.
doi: 10.1016/S0025-5564(03)00045-2.
|
[18]
|
H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Applications in Mathematics, 23 (2002), 199-213.
doi: 10.1002/oca.710.
|
[19]
|
A. Kealey and R. J. Smith?, Neglected Tropical Diseases: Infection, modelling and control, J. Health Care for the Poor and Underserved, 21 (2010), 53-69.
|
[20]
|
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. Singer, Urbanization in sub-Saharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2004), 118-127.
|
[21]
|
D. Kirschner, S. Lenhart and S. Serbin, Optimal Control of the Chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.
doi: 10.1007/s002850050076.
|
[22]
|
J. C. Koella and R. Anita, Epidemiological models for the spread of anti-malaria resistance, Malaria Journal, 2 (2003), p3.
|
[23]
|
C. M. Kribs-Zaleta and J. X. Velasco-Hernandez, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183-201.
|
[24]
|
V. Lakshmikantham, S. Leela and A. A. Martynyuk,
Stability Analysis of Nonlinear Systems, Marcel Dekker, New York and Basel, 1989.
|
[25]
|
S. Lenhart and J. T. Workman,
Control Applied to Biological Models, Chapman and Hall, London, 2007.
|
[26]
|
J. Li, D. Blakeley and R. J. Smith?, The failure of $ R_0 $,
Comp. Math. Meth. Med. , 2011 (2011), Article ID 527610, 17pp.
|
[27]
|
G. Li and Z. Jin, Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period, Chaos, Solutions and Fractals, 25 (2005), 1177-1184.
doi: 10.1016/j.chaos.2004.11.062.
|
[28]
|
Q. Longxing, J. Cui, T. Huang, F. Ye and L. Jiang, Mathematical model of schistosomiasis under flood in Anhui province Abstract and Applied Analysis, 2014(2014), Article ID 972189, 7pp.
doi: 10.1155/2014/972189.
|
[29]
|
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 1747-1757.
|
[30]
|
E. Mtisi, H. Rwezaura and J. M. Tchuenche, A mathematical analysis of malaria and Tuberculosis co-dynamics, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 827-864.
doi: 10.3934/dcdsb.2009.12.827.
|
[31]
|
Z. Mukandavire, A. B. Gumel, W. Garira and J. M. Tchuenche, Mathematical analysis of a model for HIV-Malaria co-infection, Mathematical Biosciences and Engineering, 6 (2009), 333-362.
doi: 10.3934/mbe.2009.6.333.
|
[32]
|
S. Mushayabasa and C. P. Bhunu, Modeling Schistosomiasis and HIV/AIDS co-dynamics,
Computational and Mathematical Methods in Medicine, 2011(2011), Article ID 846174, 15pp.
|
[33]
|
S. Mushayabasa and C. P. Bhunu, Is HIV infection associated with an increased risk for cholera? Insights from mathematical model, Biosystems, 109 (2012), 203-213.
|
[34]
|
I. S. Nikolaos, K. Dietz and D. Schenzle, Analysis of a model for the Pathogenesis of AIDS, Mathematical Biosciences, 145 (1997), 27-46.
doi: 10.1016/S0025-5564(97)00018-7.
|
[35]
|
K. O. Okosun, R. Ouifki and N. Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, BioSystems, 106 (2011), 136-145.
|
[36]
|
K. O. Okosun and O. D. Makinde, Optimal control analysis of malaria in the presence of non-linear incidence rate, Appl. Comput. Math., 12 (2013), 20-32.
|
[37]
|
K. O. Okosun and O. D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Mathematical Biosciences, 258 (2014), 19-32.
doi: 10.1016/j.mbs.2014.09.008.
|
[38]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko,
The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.
|
[39]
|
R. Ross,
The Prevention of Malaria, Murray, London, 1911.
|
[40]
|
P. Salgame, G. S. Yap and W. C. Gause, Effect of helminth-induced immunity on infections with microbial pathogens, Nature Immunology, 14 (2013), 1118-1126.
|
[41]
|
A. A. Semenya, J. S. Sullivan, J. W. Barnwell and W. E. Secor, Schistosoma mansoni Infection Impairs Antimalaria Treatment and Immune Responses of Rhesus Macaques Infected with Mosquito-Borne Plasmodium coatneyi, Infection and Immunity, 80 (2012), 3821-3827.
|
[42]
|
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical
modelling approach, Malaria J., 7 (2008), p111.
|
[43]
|
R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-saharan Africa Journal of Applied Mathematics and Decision Sciences, 2008(2008), Article ID 745463, 19pp.
doi: 10.1155/2008/745463.
|
[44]
|
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217.
|
[45]
|
R. C. Spear, A. Hubbard, S. Liang and E. Seto, Disease transmission models for public health decision making: Toward an approach for designing intervention strategies for Schistosomiasis japonica, Environ. Health Perspect., 10 (2002), 907-915.
|
[46]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[47]
|
R. B. Yapi, E. Hürlimann, C. A. Houngbedji, P. B. Ndri and K. D. Silué, et al., Infection
and Co-infection with Helminths and Plasmodium among School Children in Côte d'Ivoire:
Results from a National Cross-Sectional Survey, PLoS Negl. Trop. Dis., 8 (2014), e2913.
|
[48]
|
X. N. Zhou, J. G. Guo and X. H. Wu, et al., Epidemiology of schistosomiasis in the people's republic of China, 2004, Emerging Infectious Diseases, 13 (2007), 1470-1476.
|