
-
Previous Article
Population models with quasi-constant-yield harvest rates
- MBE Home
- This Issue
-
Next Article
Detecting phase transitions in collective behavior using manifold's curvature
Altruistic aging: The evolutionary dynamics balancing longevity and evolvability
School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306-4908, USA |
Altruism is typically associated with traits or behaviors that benefit the population as a whole, but are costly to the individual. We propose that, when the environment is rapidly changing, senescence (age-related deterioration) can be altruistic. According to numerical simulations of an agent-based model, while long-lived individuals can outcompete their short lived peers, populations composed of long-lived individuals are more likely to go extinct during periods of rapid environmental change. Moreover, as in many situations where other cooperative behavior arises, senescence can be stabilized in a structured population.
References:
[1] |
P. A. Abrams,
Does increased mortality favor the evolution of more rapid senescence?, Evolution, 47 (1993), 877-887.
doi: 10.2307/2410191. |
[2] |
P. Bak and K. Sneppen,
Punctuated equilibrium and criticality in a simple model of evolution, Physical Review Letters, 71 (1993), 4083.
doi: 10.1103/PhysRevLett.71.4083. |
[3] |
S. Balshine-Earn, F. C. Neat, H. Reid and M. Taborsky,
Paying to stay or paying to breed? field evidence for direct benefits of helping behavior in a cooperatively breeding fish, Behavioral Ecology, 9 (1998), 432-438.
doi: 10.1093/beheco/9.5.432. |
[4] |
G. Bavestrello, C. Sommer and M. Sarà,
Bi-directional conversion in turritopsis nutricula (hydrozoa), Scientia Marina, 56 (1992), 137-140.
|
[5] |
J. Bendor and P. Swistak,
Types of evolutionary stability and the problem of cooperation, Proceedings of the National Academy of Sciences, 92 (1995), 3596-3600.
doi: 10.1073/pnas.92.8.3596. |
[6] |
J. D. Congdon, R. D. Nagle, O. M. Kinney, R. C. van Loben Sels, T. Quinter and D. W. Tinkle,
Testing hypotheses of aging in long-lived painted turtles (chrysemys picta), Experimental Gerontology, 38 (2003), 765-772.
doi: 10.1016/S0531-5565(03)00106-2. |
[7] |
F. Fu and M. A. Nowak,
Global migration can lead to stronger spatial selection than local migration, Journal of Statistical Physics, 151 (2013), 637-653.
doi: 10.1007/s10955-012-0631-6. |
[8] |
L. Hadany, T. Beker, I. Eshel and M. W. Feldman,
Why is stress so deadly? an evolutionary perspective, Proceedings of the Royal Society of London B: Biological Sciences, 273 (2006), 881-885.
doi: 10.1098/rspb.2005.3384. |
[9] |
W. Hamilton,
The genetical evolution of social behaviour. Ⅰ, Journal of Theoretical Biology, 7 (1964), 1-16.
doi: 10.1016/0022-5193(64)90038-4. |
[10] |
G. Ichinose, M. Saito, H. Sayama and D.S. Wilson,
Adaptive long-range migration promotes cooperation under tempting conditions, Scientific Reports, 3 (2013), p2509.
doi: 10.1038/srep02509. |
[11] |
K. Jin,
Modern biological theories of aging, Aging and Disease, 1 (2010), p72.
|
[12] |
M. Kimura and G.H. Weiss,
The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics, 49 (1964), p561.
|
[13] |
T. B. Kirkwood,
Evolution of ageing, Mechanisms of Ageing and Development, 123 (2002), 737-745.
|
[14] |
P. Ljubuncic and A. Z. Reznick,
The evolutionary theories of aging revisited-a mini-review, Gerontology, 55 (2009), 205-216.
doi: 10.1159/000200772. |
[15] |
P. B. Medawar,
An Unsolved Problem of Biology, College, 1952. |
[16] |
M. A. Nowak,
Five rules for the evolution of cooperation, Science, 314 (2006), 1560-1563.
doi: 10.1126/science.1133755. |
[17] |
H. Ohtsuki, P. Bordalo and M. A. Nowak,
The one-third law of evolutionary dynamics, Journal of Theoretical Biology, 249 (2007), 289-295.
doi: 10.1016/j.jtbi.2007.07.005. |
[18] |
L. Partridge and N. H. Barton,
Optimality, mutation and the evolution of ageing, Nature: International Weekly Journal of Science, 362 (1993), 305-311.
|
[19] |
G. B. Pollock and A. Cabrales,
Suicidal altruism under random assortment, Evolutionary Ecology Research, 10 (2008), 1077-1086.
|
[20] |
A. Traulsen and M. A. Nowak,
Evolution of cooperation by multilevel selection, Proceedings of the National Academy of Sciences, 103 (2006), 10952-10955.
doi: 10.1073/pnas.0602530103. |
[21] |
J. Van Cleve,
Social evolution and genetic interactions in the short and long term, Theoretical Population Biology, 103 (2015), 2-26.
|
[22] |
J. W. Vaupel, A. Baudisch, M. Dölling, D. A. Roach and J. Gampe, The case for negative senescence, Theoretical Population Biology, 65 (2004), 339-351, http://www.sciencedirect.com/science/article/pii/S004058090400022X, Demography in the 21st Century.
doi: 10.1016/j.tpb.2003.12.003. |
[23] |
A. Weismann, E. B. Poulton, S. Schönland and A. E. Shipley,
Essays Upon Heredity and Kindred Biological Problems, vol. 1, Clarendon press, 1891.
doi: 10.5962/bhl.title.101564. |
[24] |
G. C. Williams,
Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11 (1957), 398-411.
doi: 10.2307/2406060. |
show all references
References:
[1] |
P. A. Abrams,
Does increased mortality favor the evolution of more rapid senescence?, Evolution, 47 (1993), 877-887.
doi: 10.2307/2410191. |
[2] |
P. Bak and K. Sneppen,
Punctuated equilibrium and criticality in a simple model of evolution, Physical Review Letters, 71 (1993), 4083.
doi: 10.1103/PhysRevLett.71.4083. |
[3] |
S. Balshine-Earn, F. C. Neat, H. Reid and M. Taborsky,
Paying to stay or paying to breed? field evidence for direct benefits of helping behavior in a cooperatively breeding fish, Behavioral Ecology, 9 (1998), 432-438.
doi: 10.1093/beheco/9.5.432. |
[4] |
G. Bavestrello, C. Sommer and M. Sarà,
Bi-directional conversion in turritopsis nutricula (hydrozoa), Scientia Marina, 56 (1992), 137-140.
|
[5] |
J. Bendor and P. Swistak,
Types of evolutionary stability and the problem of cooperation, Proceedings of the National Academy of Sciences, 92 (1995), 3596-3600.
doi: 10.1073/pnas.92.8.3596. |
[6] |
J. D. Congdon, R. D. Nagle, O. M. Kinney, R. C. van Loben Sels, T. Quinter and D. W. Tinkle,
Testing hypotheses of aging in long-lived painted turtles (chrysemys picta), Experimental Gerontology, 38 (2003), 765-772.
doi: 10.1016/S0531-5565(03)00106-2. |
[7] |
F. Fu and M. A. Nowak,
Global migration can lead to stronger spatial selection than local migration, Journal of Statistical Physics, 151 (2013), 637-653.
doi: 10.1007/s10955-012-0631-6. |
[8] |
L. Hadany, T. Beker, I. Eshel and M. W. Feldman,
Why is stress so deadly? an evolutionary perspective, Proceedings of the Royal Society of London B: Biological Sciences, 273 (2006), 881-885.
doi: 10.1098/rspb.2005.3384. |
[9] |
W. Hamilton,
The genetical evolution of social behaviour. Ⅰ, Journal of Theoretical Biology, 7 (1964), 1-16.
doi: 10.1016/0022-5193(64)90038-4. |
[10] |
G. Ichinose, M. Saito, H. Sayama and D.S. Wilson,
Adaptive long-range migration promotes cooperation under tempting conditions, Scientific Reports, 3 (2013), p2509.
doi: 10.1038/srep02509. |
[11] |
K. Jin,
Modern biological theories of aging, Aging and Disease, 1 (2010), p72.
|
[12] |
M. Kimura and G.H. Weiss,
The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics, 49 (1964), p561.
|
[13] |
T. B. Kirkwood,
Evolution of ageing, Mechanisms of Ageing and Development, 123 (2002), 737-745.
|
[14] |
P. Ljubuncic and A. Z. Reznick,
The evolutionary theories of aging revisited-a mini-review, Gerontology, 55 (2009), 205-216.
doi: 10.1159/000200772. |
[15] |
P. B. Medawar,
An Unsolved Problem of Biology, College, 1952. |
[16] |
M. A. Nowak,
Five rules for the evolution of cooperation, Science, 314 (2006), 1560-1563.
doi: 10.1126/science.1133755. |
[17] |
H. Ohtsuki, P. Bordalo and M. A. Nowak,
The one-third law of evolutionary dynamics, Journal of Theoretical Biology, 249 (2007), 289-295.
doi: 10.1016/j.jtbi.2007.07.005. |
[18] |
L. Partridge and N. H. Barton,
Optimality, mutation and the evolution of ageing, Nature: International Weekly Journal of Science, 362 (1993), 305-311.
|
[19] |
G. B. Pollock and A. Cabrales,
Suicidal altruism under random assortment, Evolutionary Ecology Research, 10 (2008), 1077-1086.
|
[20] |
A. Traulsen and M. A. Nowak,
Evolution of cooperation by multilevel selection, Proceedings of the National Academy of Sciences, 103 (2006), 10952-10955.
doi: 10.1073/pnas.0602530103. |
[21] |
J. Van Cleve,
Social evolution and genetic interactions in the short and long term, Theoretical Population Biology, 103 (2015), 2-26.
|
[22] |
J. W. Vaupel, A. Baudisch, M. Dölling, D. A. Roach and J. Gampe, The case for negative senescence, Theoretical Population Biology, 65 (2004), 339-351, http://www.sciencedirect.com/science/article/pii/S004058090400022X, Demography in the 21st Century.
doi: 10.1016/j.tpb.2003.12.003. |
[23] |
A. Weismann, E. B. Poulton, S. Schönland and A. E. Shipley,
Essays Upon Heredity and Kindred Biological Problems, vol. 1, Clarendon press, 1891.
doi: 10.5962/bhl.title.101564. |
[24] |
G. C. Williams,
Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11 (1957), 398-411.
doi: 10.2307/2406060. |







[1] |
Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 |
[2] |
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75 |
[3] |
Rinaldo M. Colombo, Thomas Lorenz, Nikolay I. Pogodaev. On the modeling of moving populations through set evolution equations. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 73-98. doi: 10.3934/dcds.2015.35.73 |
[4] |
Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685 |
[5] |
Dobromir T. Dimitrov, Aaron A. King. Modeling evolution and persistence of neurological viral diseases in wild populations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 729-741. doi: 10.3934/mbe.2008.5.729 |
[6] |
Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37 |
[7] |
Agnieszka Bartłomiejczyk, Henryk Leszczyński. Structured populations with diffusion and Feller conditions. Mathematical Biosciences & Engineering, 2016, 13 (2) : 261-279. doi: 10.3934/mbe.2015002 |
[8] |
Karan Pattni, Mark Broom, Jan Rychtář. Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1975-2004. doi: 10.3934/dcdsb.2018191 |
[9] |
Thomas G. Hallam, Qingping Deng. Simulation of structured populations in chemically stressed environments. Mathematical Biosciences & Engineering, 2006, 3 (1) : 51-65. doi: 10.3934/mbe.2006.3.51 |
[10] |
Cédric Wolf. A mathematical model for the propagation of a hantavirus in structured populations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1065-1089. doi: 10.3934/dcdsb.2004.4.1065 |
[11] |
Àngel Calsina, József Z. Farkas. Boundary perturbations and steady states of structured populations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6675-6691. doi: 10.3934/dcdsb.2019162 |
[12] |
Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263 |
[13] |
József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences & Engineering, 2011, 8 (2) : 503-513. doi: 10.3934/mbe.2011.8.503 |
[14] |
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 |
[15] |
Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487-496. doi: 10.3934/proc.2005.2005.487 |
[16] |
H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1 |
[17] |
H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044 |
[18] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[19] |
Marcello Delitala, Tommaso Lorenzi. Evolutionary branching patterns in predator-prey structured populations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2267-2282. doi: 10.3934/dcdsb.2013.18.2267 |
[20] |
Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure and Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]