[1]
|
D. Callaway and A. Perelson, HIV-1 infection and low steady state viral loads, Bull.Math.Biol., 64 (2002), 29-64.
doi: 10.1006/bulm.2001.0266.
|
[2]
|
P. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies SIAM, 2015.
|
[3]
|
P. Constantine and D. Gleich, Computing active subspaces with monte carlo, arXiv: 1408.0545
|
[4]
|
P. Constantine, B. Zaharatos and M. Campanelli, Discovering an active subspace in a single-diode solar cell model, Statistical Analysis and Data Mining: The ASA Data Science Journal, 8 (2015), 264-273.
doi: 10.1002/sam.11281.
|
[5]
|
A. S. Fauci, G. Pantaleo and S. Stanley, et al., Immunopathogenic mechanisms of HIV infection, Annals of Internal Medicine, 124 (1996), 654-663.
|
[6]
|
T. C. Greenough, D. B. Brettler and F. Kirchhoff, et al., Long-term non-progressive infection with Human Immunodeficiency Virus in a Hemophilia cohort, J Infect Dis, 180 (1999), 1790-1802.
|
[7]
|
A. B. Gumel, P. N. Shivakumar and B. M. Sahai, A mathematical model for the dynamics of HIV-1 during the typical course of infection, Nonlinear Analysis, 47 (2001), 1773-1783.
doi: 10.1016/S0362-546X(01)00309-1.
|
[8]
|
M. Hadjiandreou, R. Conejeros and V. S. Vassiliadis, Towards a long-term model construction for the dynamic simulation of HIV infection, Mathematical Biosciences and Engineering, 4 (2007), 489-504.
|
[9]
|
E. Hernandez-Vargas and R. Middleton, Modeling the three stages in HIV infection, J TheorBiol., 320 (2013), 33-40.
doi: 10.1016/j.jtbi.2012.11.028.
|
[10]
|
T. Igarashi, C. R. Brown and Y. Endo, et al., Macrophages are the principal reservoir and sustain high virus loads in Rhesus Macaques following the depletion of CD4+ T-cells by a highly pathogenic SIV: Implications for HIV-1 infections of man, Proc Natl Acad Sci., 98 (2001), 658-663.
|
[11]
|
E. Jones and P. Roemer (sponsors: S. Pankavich and M. Raghupathi), Analysis and simulation of the three-component model of HIV dynamics, SIAM Undergraduate Research Online, 7 (2014), 89–106
doi: 10.1137/13S012698.
|
[12]
|
D. Kirschner, Using mathematics to understand HIV immunodynamics, Am. Math. Soc., 43 (1996), 191-202.
|
[13]
|
D. E. Kirschner and A. S. Perelson, A model for the immune response to HIV: AZT treatment studies, Mathematical Population Dynamics: Analysis of Heterogeneity, Volume One: Theory of Epidemics Eds. O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, Wuerz Publishing Ltd., Winnipeg, Canada, (1993), 295–310.
|
[14]
|
D. Kirschner and G. F. Webb, Immunotherapy of HIV-1 infection, J Biological Systems, 6 (1998), 71-83.
doi: 10.1142/S0218339098000091.
|
[15]
|
D. Kirschner, G. F. Webb and M. Cloyd, A model of HIV-1 disease progression based on virus-induced lymph node homing-induced apoptosis of CD4+ lymphocytes, J Acquir Immune Dec Syndr, 24 (2000), 352-362.
|
[16]
|
J. M. Murray, G. Kaufmann and A. D. Kelleher, et al., A model of primary HIV-1 infection, Math Biosci, 154 (1998), 57-85.
doi: 10.1016/S0025-5564(98)10046-9.
|
[17]
|
M. Nowak and R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology Oxford University Press, NewYork, 2000.
|
[18]
|
S. Pankavich, The effects of latent infection on the dynamics of HIV, Differential Equations and Dynamical Systems, 24 (2016), 281-303.
doi: 10.1007/s12591-014-0234-6.
|
[19]
|
S. Pankavich and D. Shutt, An in-host model of HIV incorporating latent infection and viral mutation, Dynamical Systems, Differential Equations, and Applications, AIMS Proceedings, (2015), 913-922.
doi: 10.3934/proc.2015.0913.
|
[20]
|
S. Pankavich, N. Neri and D. Shutt, Bistable dynamics and Hopf bifurcation in a refined model of the acute stage of HIV infection, submitted, (2015).
|
[21]
|
S. Pankavich and C. Parkinson, Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity, Discrete and Continuous Dynamical Systems B, 21 (2016), 1237-1257.
doi: 10.3934/dcdsb.2016.21.1237.
|
[22]
|
E. Pennisi and J. Cohen, Eradicating HIV from a patient: Not just a dream?, Science, 272 (1996), 1884.
|
[23]
|
A. S. Perelson, Modeling the Interaction of the Immune System with HIV, Lecture Notes in Biomath. Berlin: Springer, 1989.
doi: 10.1007/978-3-642-93454-4_17.
|
[24]
|
A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.
doi: 10.1137/S0036144598335107.
|
[25]
|
T. M. Russi, Uncertainty Quantification with Experimental data and Complex System Models, Ph. D. thesis, UC Berkeley, 2010.
|
[26]
|
W. Y. Tan and H. Wu, Stochastic modeing of the dynamics of CD4+ T-cell infection by HIV and some monte carlo studies, Math Biosci, 147 (1997), 173-205.
doi: 10.1016/S0025-5564(97)00094-1.
|
[27]
|
E. Vergu, A. Mallet and J. Golmard, A modeling approach to the impact of HIV mutations on the immune system, Comput Biol Med., 35 (2005), 1-24.
doi: 10.1016/j.compbiomed.2004.01.001.
|