[1]
|
P.-A. Abrahamsson, Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010), 49-59.
doi: 10.1016/j.eururo.2009.07.049.
|
[2]
|
H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, J. Inverse Ill-Posed Probl., 15 (2007), 683-708.
doi: 10.1515/jiip.2007.038.
|
[3]
|
H.T. Banks and D.M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005), 607-625.
doi: 10.1007/s00285-004-0299-x.
|
[4]
|
N. C. Buchan and S. L. Goldenberg, Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010), 552-560.
doi: 10.1038/nrurol.2010.141.
|
[5]
|
N. Chitnis, J.M. Hyman and J.M. Chushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[6]
|
R.A. Everett, A.M. Packer and Y. Kuang, Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014), 139-157.
doi: 10.1142/9789814730266_0009.
|
[7]
|
J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger Publishing, Malabar FL, 1980.
|
[8]
|
Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517-527.
doi: 10.1016/j.jtbi.2010.02.027.
|
[9]
|
A.M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593-614.
doi: 10.1007/s00332-008-9031-0.
|
[10]
|
H. Lepor and N.D. Shore, LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012), 1-12.
|
[11]
|
Prostate cancer treatment (PDQ) -Patient Version National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostate-treatment-pdq.
|
[12]
|
T. Portz, Y. Kuang and J.D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 1-14.
doi: 10.1063/1.3697848.
|
[13]
|
M.H. Rashid and U.B. Chaudhary, Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295-301.
doi: 10.1634/theoncologist.9-3-295.
|
[14]
|
F.G. Rick and A.V. Schally, Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015), 270-274.
doi: 10.1016/j.urolonc.2014.11.006.
|
[15]
|
A. Sciarra, P.A. Abrahamsson, M. Brausi, M. Galsky, N. Mottet, O. Sartor, T.L.J. Tammela and F.C. da Silva, Intermittent androgen-depravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013), 722-730.
|
[16]
|
L.G. Stanley, Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001), 721-748.
doi: 10.1081/NFA-100105315.
|
[17]
|
Y. Suzuki, D. Sakai, T. Nomura, Y. Hirata and K. Aihara, A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddle-point dynamics, J. Theor. Biol., 350 (2014), 1-16.
doi: 10.1016/j.jtbi.2014.02.004.
|
[18]
|
G. Tanaka, K. Tsumoto, S. Tsuji and K. Aihara, Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008), 2616-2627.
doi: 10.1016/j.physd.2008.03.044.
|
[19]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-61453-8.
|
[20]
|
L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M. S. thesis, Sam Houston University, 2012.
|