August  2017, 14(4): 821-842. doi: 10.3934/mbe.2017045

A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis

1. 

Instituto Superior de Engenharia de Lisboa - ISEL, Department of Mathematics, Rua Conselheiro Emídio Navarro 1, 1949-014 Lisboa, Portugal

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

* Corresponding author

Received  September 2016 Revised  December 09, 2016 Published  February 2017

Fund Project: This work was partially funded by FCT/Portugal through UID/MAT/04459/2013.

Nonlinear systems are commonly able to display abrupt qualitative changes (or transitions) in the dynamics. A particular type of these transitions occurs when the size of a chaotic attractor suddenly changes. In this article, we present such a transition through the observation of a chaotic interior crisis in the Deng bursting-spiking model for the glucose-induced electrical activity of pancreatic $β $-cells. To this chaos-chaos transition corresponds precisely the change between the bursting and spiking dynamics, which are central and key dynamical regimes that the Deng model is able to perform. We provide a description of the crisis mechanism at the bursting-spiking transition point in terms of time series variations and based on certain amplitudes of invariant intervals associated with return maps. Using symbolic dynamics, we are able to accurately compute the points of a curve representing the transition between the bursting and spiking regimes in a biophysical meaningfully parameter space. The analysis of the chaotic interior crisis is complemented by means of topological invariants with the computation of the topological entropy and the maximum Lyapunov exponent. Considering very recent developments in the literature, we construct analytical solutions triggering the bursting-spiking transition in the Deng model. This study provides an illustration of how an integrated approach, involving numerical evidences and theoretical reasoning within the theory of dynamical systems, can directly enhance our understanding of biophysically motivated models.

Citation: Jorge Duarte, Cristina Januário, Nuno Martins. A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences & Engineering, 2017, 14 (4) : 821-842. doi: 10.3934/mbe.2017045
References:
[1]

J. Aguirre, E. Mosekilde and M. A. F. Sanjuán, Analysis of the noise-induced bursting-spiking transition in a pancreatic $β $-cell model ,Pysical Review E, 69 (2004), 041910, 16pp. doi: 10.1103/PhysRevE.69.041910.

[2]

I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone and E. Rojas, The Nature of the Oscillatory Behaviour in Electrical Activity from Pancreatic Beta-cell ,Georg Thieme, New York, 1980.

[3]

C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, R. L. Viana and S. R. Lopes, Chaotic phase synchronization in scale-free networks of bursting neurons,Phys. Rev. E, 76 (2007), 016218, 10pp. doi: 10.1103/PhysRevE.76.016218.

[4]

C. A. S. Batista, E. L. Lameu, A. M. Batista, S. R. Lopes, T. Pereira, G. Zamora-López, J. Kurths and R. L. Viana. Phase synchronization of bursting neurons in clustered small-world networks ,Phys. Rev. E ,86 (2012), 016211. doi: 10.1103/PhysRevE.86.016211.

[5]

R. Bertram and A. Sherman, Dynamical complexity and temporal plasticity in pancreatic beta cells, J. Biosci., 25 (2000), 197-209. 

[6]

T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cel, Biophys. J., 42 (1983), 181-190. 

[7]

T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 16 (1984), 233-242. 

[8]

L. O. ChuaM. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.  doi: 10.1109/TCS.1985.1085791.

[9]

B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic $β $-cells, Math. Biosciences, 119 (1994), 241-250.  doi: 10.1016/0025-5564(94)90078-7.

[10]

B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic $β $-cells, J. Math. Biol., 38 (1999), 21-78.  doi: 10.1007/s002850050141.

[11]

J. DuarteC. Januário and N. Martins, Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic beta-cells, Physica D, 238 (2009), 2129-2137.  doi: 10.1016/j.physd.2009.08.010.

[12]

J. DuarteC. Januário and N. Martins, Explicit series solution for a glucose-induced electrical activity model of pancreatic cells, Chaos, Solitons & Fractals, 76 (2015), 1-9.  doi: 10.1016/j.chaos.2015.02.029.

[13]

J. Duarte, C. Januário, C. Rodrigues and J. Sardany és, Topological complexity and predictability in the dynamics of a tumor growth model with Shilnikov's chaos ,Int. J Bifurcation Chaos, 23 (2013), 1350124, 12pp. doi: 10.1142/S0218127413501241.

[14]

H. Fallah, Symmetric fold / super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model Int.,J Bifurcation Chaos, 26 (2016), 1630022, 14pp. doi: 10.1142/S0218127416300226.

[15]

Y.-S. Fan and T. R. Chay, Crisis Transitions in excitable cell models, Chaos, Solitons & Fractals, 3 (1993), 603-615. 

[16]

Y.-S. Fan and T. R. Chay, Crisis and topological entropy, Physical Review E, 51 (1995), 1012-1019.  doi: 10.1103/PhysRevE.51.1012.

[17]

L. E. FridlyandN. Tamarina and L. H. Philipson, Bursting and calcium oscillations in pancreatic beta cells: Specific pacemakers, Am J Physiol Endocrinol Metab., 299 (2010), E517-E532. 

[18]

J. M. González-Miranda, Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model, Chaos, 13 (2003), 845.

[19]

J. M. González-Miranda, Complex bifurcations structures in the Hindmarsh-Rose neuron model, Int. J Bifurcation Chaos, 17 (2007), 3071-3083.  doi: 10.1142/S0218127407018877.

[20]

J. M. González-Miranda, Nonlinear dynamics of the membrane potential of a bursting pacemaker cell, Chaos, 22 (2012), 013123.

[21]

J. M. González-Miranda, Pacemaker dynamics in the full Morris-Lecar model, Commun. Nonlinear Sci Numer Simulat, 19 (2014), 3229-3241.  doi: 10.1016/j.cnsns.2014.02.020.

[22]

H.-G. GuB. Jia and G.-R. Chen, Experimental evidence of a chaotic region in a neural pacemaker, Physics Letters A, 377 (2013), 718-720. 

[23]

H. GuB. Pan and G. Chen, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn., 78 (2014), 391-407.  doi: 10.1007/s11071-014-1447-5.

[24]

S. Jalil, I. Belykh and A. Shilnikov. Spikes matter for phase-locked bursting in inhibitory neurons ,Phys. Rev. E,85 (2012), 036214. doi: 10.1103/PhysRevE.85.036214.

[25]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems ,Cambridge University Press, 1995. doi: 10.1017/CBO9780511809187.

[26]

J. P. Lampreia and J. S. Ramos, Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997), 1-18. 

[27]

S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method ,CRC Press, Chapman and Hall, Boca Raton, FL, 2004.

[28]

S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math., 119 (2007), 297-354.  doi: 10.1111/j.1467-9590.2007.00387.x.

[29]

S. Liao, Advances in the Homotopy Analysis Method, World Scientific Publishing Co, 2014. doi: 10.1142/8939.

[30] A. J. Tan and M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992.  doi: 10.1007/978-1-4757-2184-3.
[31]

A. MarkovicT. L. O. StozerM. GosakJ. Dolensek and M. Marhl, Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns, Scientific Reports, 5 (2015), 7845.  doi: 10.1038/srep07845.

[32]

T. MatsumotoT. L. O. Chua and M. Komuro., The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.  doi: 10.1109/TCS.1985.1085791.

[33]

J. Milnor and W. Thurston, On iterated maps of the interval, Lect. Notes in Math., 1342 (1988), 465-563.  doi: 10.1007/BFb0082847.

[34]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. 

[35]

S. E. NewhouseD. Ruelle and F. Takens, Occurrence of strange Axiom A attractors near quasiperiodic flows on T$^{m}$, $m≥3$, Commun. Math. Phys., 64 (1978), 35-40.  doi: 10.1007/BF01940759.

[36]

E. Ott, Chaos in Dynamical Systems ,Cambridge University Press, Cmabridge, UK, 2002. doi: 10.1017/CBO9780511803260.

[37]

T. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems ,Springer-Verlag, 1989. doi: 10.1007/978-1-4612-3486-9.

[38]

M. G. PedersonE. MosekildeK. S. Polonsky and D. S. Luciani, Complex Patterns of Metabolic and Ca$^{2+}$ entrainment in pancreatic islets by oscillatory glucose, Biophysical Journal, 105 (2013), 29-39. 

[39]

K. Ramasubramanian and M. S. Sriram, A Comparative study of computation of Lyapunov spectra with different algorithms, Physica D, 139 (2000), 72-86.  doi: 10.1016/S0167-2789(99)00234-1.

[40] J. Rinzel, Ordinary and Partial Differential Equations, Springer, New York, 1985. 
[41]

G. A. Rutter and D. J. Hodson, Minireview: Intraislet regulation of insulin secretion in humans, Molecular Endocrinology, 27 (2013), 1984-1995.  doi: 10.1210/me.2013-1278.

[42]

A. Sherman, P. Carroll, R. M. Santos and I. Atwater, Glucose Dose Response of Pancreatic $β $-cells: Experimental and Theoretical Results, Transitions in Biological Systems, Eds Pienum, New York, 1990.

[43]

A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices, PLoS Comput. Biol. , 9 (2013), e1002923.

[44]

A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional connectinity in islets of Langerhans from mouse pancreas tissue slices, PLOS Comp. Biol. ,9 (2013), e1002923.

[45]

J. WangS. Liu and X. Liu, Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic $β $-cells, Chaos, Solitons & Fractals, 68 (2014), 65-71. 

[46]

J. Wang, S. Liu and X. Liu, Bifurcation and firing patterns of the pancreatic $β $-cell ,Int. J Bifurcation Chaos, 9 (2015), 1530024, 11pp. doi: 10.1142/S0218127415300244.

show all references

References:
[1]

J. Aguirre, E. Mosekilde and M. A. F. Sanjuán, Analysis of the noise-induced bursting-spiking transition in a pancreatic $β $-cell model ,Pysical Review E, 69 (2004), 041910, 16pp. doi: 10.1103/PhysRevE.69.041910.

[2]

I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone and E. Rojas, The Nature of the Oscillatory Behaviour in Electrical Activity from Pancreatic Beta-cell ,Georg Thieme, New York, 1980.

[3]

C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, R. L. Viana and S. R. Lopes, Chaotic phase synchronization in scale-free networks of bursting neurons,Phys. Rev. E, 76 (2007), 016218, 10pp. doi: 10.1103/PhysRevE.76.016218.

[4]

C. A. S. Batista, E. L. Lameu, A. M. Batista, S. R. Lopes, T. Pereira, G. Zamora-López, J. Kurths and R. L. Viana. Phase synchronization of bursting neurons in clustered small-world networks ,Phys. Rev. E ,86 (2012), 016211. doi: 10.1103/PhysRevE.86.016211.

[5]

R. Bertram and A. Sherman, Dynamical complexity and temporal plasticity in pancreatic beta cells, J. Biosci., 25 (2000), 197-209. 

[6]

T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cel, Biophys. J., 42 (1983), 181-190. 

[7]

T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 16 (1984), 233-242. 

[8]

L. O. ChuaM. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.  doi: 10.1109/TCS.1985.1085791.

[9]

B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic $β $-cells, Math. Biosciences, 119 (1994), 241-250.  doi: 10.1016/0025-5564(94)90078-7.

[10]

B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic $β $-cells, J. Math. Biol., 38 (1999), 21-78.  doi: 10.1007/s002850050141.

[11]

J. DuarteC. Januário and N. Martins, Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic beta-cells, Physica D, 238 (2009), 2129-2137.  doi: 10.1016/j.physd.2009.08.010.

[12]

J. DuarteC. Januário and N. Martins, Explicit series solution for a glucose-induced electrical activity model of pancreatic cells, Chaos, Solitons & Fractals, 76 (2015), 1-9.  doi: 10.1016/j.chaos.2015.02.029.

[13]

J. Duarte, C. Januário, C. Rodrigues and J. Sardany és, Topological complexity and predictability in the dynamics of a tumor growth model with Shilnikov's chaos ,Int. J Bifurcation Chaos, 23 (2013), 1350124, 12pp. doi: 10.1142/S0218127413501241.

[14]

H. Fallah, Symmetric fold / super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model Int.,J Bifurcation Chaos, 26 (2016), 1630022, 14pp. doi: 10.1142/S0218127416300226.

[15]

Y.-S. Fan and T. R. Chay, Crisis Transitions in excitable cell models, Chaos, Solitons & Fractals, 3 (1993), 603-615. 

[16]

Y.-S. Fan and T. R. Chay, Crisis and topological entropy, Physical Review E, 51 (1995), 1012-1019.  doi: 10.1103/PhysRevE.51.1012.

[17]

L. E. FridlyandN. Tamarina and L. H. Philipson, Bursting and calcium oscillations in pancreatic beta cells: Specific pacemakers, Am J Physiol Endocrinol Metab., 299 (2010), E517-E532. 

[18]

J. M. González-Miranda, Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model, Chaos, 13 (2003), 845.

[19]

J. M. González-Miranda, Complex bifurcations structures in the Hindmarsh-Rose neuron model, Int. J Bifurcation Chaos, 17 (2007), 3071-3083.  doi: 10.1142/S0218127407018877.

[20]

J. M. González-Miranda, Nonlinear dynamics of the membrane potential of a bursting pacemaker cell, Chaos, 22 (2012), 013123.

[21]

J. M. González-Miranda, Pacemaker dynamics in the full Morris-Lecar model, Commun. Nonlinear Sci Numer Simulat, 19 (2014), 3229-3241.  doi: 10.1016/j.cnsns.2014.02.020.

[22]

H.-G. GuB. Jia and G.-R. Chen, Experimental evidence of a chaotic region in a neural pacemaker, Physics Letters A, 377 (2013), 718-720. 

[23]

H. GuB. Pan and G. Chen, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn., 78 (2014), 391-407.  doi: 10.1007/s11071-014-1447-5.

[24]

S. Jalil, I. Belykh and A. Shilnikov. Spikes matter for phase-locked bursting in inhibitory neurons ,Phys. Rev. E,85 (2012), 036214. doi: 10.1103/PhysRevE.85.036214.

[25]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems ,Cambridge University Press, 1995. doi: 10.1017/CBO9780511809187.

[26]

J. P. Lampreia and J. S. Ramos, Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997), 1-18. 

[27]

S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method ,CRC Press, Chapman and Hall, Boca Raton, FL, 2004.

[28]

S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math., 119 (2007), 297-354.  doi: 10.1111/j.1467-9590.2007.00387.x.

[29]

S. Liao, Advances in the Homotopy Analysis Method, World Scientific Publishing Co, 2014. doi: 10.1142/8939.

[30] A. J. Tan and M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992.  doi: 10.1007/978-1-4757-2184-3.
[31]

A. MarkovicT. L. O. StozerM. GosakJ. Dolensek and M. Marhl, Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns, Scientific Reports, 5 (2015), 7845.  doi: 10.1038/srep07845.

[32]

T. MatsumotoT. L. O. Chua and M. Komuro., The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.  doi: 10.1109/TCS.1985.1085791.

[33]

J. Milnor and W. Thurston, On iterated maps of the interval, Lect. Notes in Math., 1342 (1988), 465-563.  doi: 10.1007/BFb0082847.

[34]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. 

[35]

S. E. NewhouseD. Ruelle and F. Takens, Occurrence of strange Axiom A attractors near quasiperiodic flows on T$^{m}$, $m≥3$, Commun. Math. Phys., 64 (1978), 35-40.  doi: 10.1007/BF01940759.

[36]

E. Ott, Chaos in Dynamical Systems ,Cambridge University Press, Cmabridge, UK, 2002. doi: 10.1017/CBO9780511803260.

[37]

T. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems ,Springer-Verlag, 1989. doi: 10.1007/978-1-4612-3486-9.

[38]

M. G. PedersonE. MosekildeK. S. Polonsky and D. S. Luciani, Complex Patterns of Metabolic and Ca$^{2+}$ entrainment in pancreatic islets by oscillatory glucose, Biophysical Journal, 105 (2013), 29-39. 

[39]

K. Ramasubramanian and M. S. Sriram, A Comparative study of computation of Lyapunov spectra with different algorithms, Physica D, 139 (2000), 72-86.  doi: 10.1016/S0167-2789(99)00234-1.

[40] J. Rinzel, Ordinary and Partial Differential Equations, Springer, New York, 1985. 
[41]

G. A. Rutter and D. J. Hodson, Minireview: Intraislet regulation of insulin secretion in humans, Molecular Endocrinology, 27 (2013), 1984-1995.  doi: 10.1210/me.2013-1278.

[42]

A. Sherman, P. Carroll, R. M. Santos and I. Atwater, Glucose Dose Response of Pancreatic $β $-cells: Experimental and Theoretical Results, Transitions in Biological Systems, Eds Pienum, New York, 1990.

[43]

A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices, PLoS Comput. Biol. , 9 (2013), e1002923.

[44]

A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional connectinity in islets of Langerhans from mouse pancreas tissue slices, PLOS Comp. Biol. ,9 (2013), e1002923.

[45]

J. WangS. Liu and X. Liu, Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic $β $-cells, Chaos, Solitons & Fractals, 68 (2014), 65-71. 

[46]

J. Wang, S. Liu and X. Liu, Bifurcation and firing patterns of the pancreatic $β $-cell ,Int. J Bifurcation Chaos, 9 (2015), 1530024, 11pp. doi: 10.1142/S0218127415300244.

Figure 1.  (a) Attractor of the system (1) for $ \rho =$0.59625. (b) Bursting orbit of $V(t)$ with $ \rho =$0.4. (c) Spiking orbit of $V(t)$ with $ \rho =$0.8. In all situations $ \epsilon =$0.08
Figure 2.  Samples of time series of the three model variables before the interior glucose-induced crisis, with $ \rho =$0.58, and after the interior glucose-induced crisis, with $ \rho =$0.64. In all situations $ \epsilon =$0.08
Figure 3.  Characterization of the Deng bursting system given by Eqs. 1. (a) The maximum Lyapunov exponent. (b) Bifurcation diagram computed using the successive maxima of $C(t)$, considering $ \rho \in $[0.42, 0.642] and $ \epsilon =$0.08. (c) Estimate of the size of the attractor given by the range of variation of $\Delta _{C}( \rho )$. (d) The function $\Delta _{C}( \rho )$ and (e) its derivative $ \frac{d\Delta _{C}}{d \rho }$, both displayed in a narrow interval arround the transition point, $ \rho ^{\ast }$
Figure 4.  Representation of functions $\Lambda _{C}( \rho )$ for different values of $ \epsilon $: $ \epsilon $=0.05, $ \epsilon $=0.06, $ \epsilon $=0.07, $ \epsilon $ =0.08, $ \epsilon $=0.09 and $ \epsilon $=1.0, considering $ \rho \in $[0.42, 0.642]
Figure 5.  Representation of function $S( \rho )$ for $ \rho \in $[0.42, 0.642] and $ \epsilon $=0.08
Figure 6.  (a) Time series of the variable $V$. (b) Time series of the variable $C$ (each local maximum of $C(t)$ corresponds to a peak in the time series of the membrane voltage $V(t)$). (c) Iterated map constructed from the successive local maxima of variable $C$. In all situations $ \rho =$0.5927 and $ \epsilon =$0.08
Figure 7.  (a) The extrema of invariant intervals I=$\left[ f^{2}(c),f(c) \right] $, for $ \epsilon $=0.08 and $ \rho \in $[0.42, 0.642]. (b) Amplitudes of the invariant intervals as a function of $ \rho $, $ \Lambda _{I}\left( \rho \right) $, for $ \epsilon $=0.08 and $ \rho \in $[0.42, 0.642]
Figure 8.  Curve of critical points in the $( \rho , \epsilon )$ -plane separating bursting from spiking dynamics, for $ \rho \in $ [0.580, 0.6004] and $ \epsilon \in $[0.05, 0.1]
Figure 9.  Dynamics along the crisis transition curve. (a) Values of the largest Lyapunov exponent and values of the Topological entropy. (b) Typical bifurcation diagram with $ \rho $ as control parameter
Figure 10.  (a) Variation of the triggering interval $J_{ \rho }$ with the control parameter $ \rho $. (b) Bursting orbit of the derived analytical solution (with $h$= -0.660746), for $ \rho =$0.59439 and $ \delta =$0.02815. (c) Continuous spiking orbit of the derived analytical solution (with $h$= -0.73926), for $ \rho =$0.59439 and $ \delta $= -0.02184
[1]

Jiaoyan Wang, Jianzhong Su, Humberto Perez Gonzalez, Jonathan Rubin. A reliability study of square wave bursting $\beta$-cells with noise. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 569-588. doi: 10.3934/dcdsb.2011.16.569

[2]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

[3]

Stefania Gatti. An oxygen driven proliferative-to-invasive transition of glioma cells: An analytical study. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2233-2248. doi: 10.3934/dcdss.2022002

[4]

Jianzhong Su, Humberto Perez-Gonzalez, Ming He. Regular bursting emerging from coupled chaotic neurons. Conference Publications, 2007, 2007 (Special) : 946-955. doi: 10.3934/proc.2007.2007.946

[5]

Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259

[6]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[7]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, 2021, 29 (4) : 2561-2597. doi: 10.3934/era.2021002

[8]

Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2201-2211. doi: 10.3934/dcdss.2016092

[9]

Sébastien Biebler. Lattès maps and the interior of the bifurcation locus. Journal of Modern Dynamics, 2019, 15: 95-130. doi: 10.3934/jmd.2019014

[10]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1545-1557. doi: 10.3934/cpaa.2021032

[13]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[14]

Antonio Pumariño, Joan Carles Tatjer. Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 971-1005. doi: 10.3934/dcdsb.2007.8.971

[15]

Manuela Giampieri, Stefano Isola. A one-parameter family of analytic Markov maps with an intermittency transition. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 115-136. doi: 10.3934/dcds.2005.12.115

[16]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067

[17]

Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052

[18]

Jie Li. How chaotic is an almost mean equicontinuous system?. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4727-4744. doi: 10.3934/dcds.2018208

[19]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[20]

Tatsuya Arai, Naotsugu Chinen. The construction of chaotic maps in the sense of Devaney on dendrites which commute to continuous maps on the unit interval. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 547-556. doi: 10.3934/dcds.2004.11.547

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (46)
  • HTML views (62)
  • Cited by (1)

Other articles
by authors

[Back to Top]