• Previous Article
    A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma
  • MBE Home
  • This Issue
  • Next Article
    A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis
August  2017, 14(4): 843-880. doi: 10.3934/mbe.2017046

A two-patch prey-predator model with predator dispersal driven by the predation strength

1. 

Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

2. 

Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India

3. 

Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, Mesa, AZ 85212, USA

* Corresponding author: Yun Kang

Received  August 30, 2016 Accepted  December 25, 2016 Published  February 2017

Fund Project: The first author is partially supported by NSF-DMS(1313312); NSF-IOS/DMS (1558127) and The James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award (UHC Scholar Award 220020472).

Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

Citation: Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046
References:
[1]

L. Aarssen and R. Turkington, Biotic specialization between neighbouring genotypes in lolium perenne and trifolium repens from a permanent pasture, The Journal of Ecology, 73 (1985), 605-614.  doi: 10.2307/2260497.

[2]

R. F. Alder, Migration alone can produce persistence of host-parasitoid models, The American Naturalist, 141 (1993), 642-650. 

[3]

J. Bascompte and R. V. Solé, Spatially induced bifurcations in single-species population dynamics, Journal of Animal Ecology, 63 (1994), 256-264.  doi: 10.2307/5544.

[4]

B. M. Bolker and S. W. Pacala, Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal, The American Naturalist, 153 (1999), 575-602.  doi: 10.1086/303199.

[5]

C. J. BolterM. DickeJ. J. Van LoonJ. Visser and M. A. Posthumus, Attraction of colorado potato beetle to herbivore-damaged plants during herbivory and after its termination, Journal of Chemical Ecology, 23 (1997), 1003-1023.  doi: 10.1023/B:JOEC.0000006385.70652.5e.

[6]

C. Carroll and D. H. Janzen, Ecology of foraging by ants, Annual Review of Ecology and Systematics, 4 (1973), 231-257.  doi: 10.1146/annurev.es.04.110173.001311.

[7]

A. CasalJ. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential and Integral Equations, 7 (1994), 411-439. 

[8]

P. L. Chesson and W. W. Murdoch, Aggregation of risk: Relationships among host-parasitoid models, American Naturalist, 127 (1986), 696-715.  doi: 10.1086/284514.

[9]

W. C. Chewning, Migratory effects in predator-prey models, Mathematical Biosciences, 23 (1975), 253-262.  doi: 10.1016/0025-5564(75)90039-5.

[10]

R. Cressman and K. Vlastimil, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358.  doi: 10.1007/s00285-012-0548-3.

[11]

E. Curio, The Ethology of Predation ,Springer-Verlag Berlin Heidelberg, 7 1976. doi: 10.1007/978-3-642-81028-2.

[12]

M. Doebli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106.  doi: 10.1006/tpbi.1995.1004.

[13]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, Journal of Applied Analysis and Computation, 1 (2011), 193-203. 

[14]

J. Ford, The Role of the Trypanosomiases in African Ecology. A Study of the Tsetse Fly Problem, in Oxford University Press, Oxford, 1971.

[15]

A. G. Gatehouse, Permanence and the dynamics of biological systems, Host Finding Behaviour Of Tsetse Flies, (1972), 83-95. 

[16]

S. Ghosh and S. Bhattacharyya, A two-patch prey-predator model with food-gathering activity, Journal of Applied Mathematics and Computing, 37 (2011), 497-521.  doi: 10.1007/s12190-010-0446-z.

[17]

M. Gillies and T. Wilkes, The range of attraction of single baits for some West African mosquitoes, Bulletin of Entomological Research, 60 (1970), 225-235.  doi: 10.1017/S000748530004075X.

[18]

M. Gillies and T. Wilkes, The range of attraction of animal baits and carbon dioxide for mosquitoes, Bulletin of Entomological Research, 61 (1972), 389-404. 

[19]

M. Gillies and T. Wilkes, The range of attraction of birds as baits for some west african mosquitoes (diptera, culicidae), Bulletin of Entomological Research, 63 (1974), 573-582.  doi: 10.1017/S0007485300047817.

[20] I. Hanski, Metapopulation Ecology, Oxford University Press, Oxford, 1999. 
[21] I. A. Hanski and M. E. Gilpin, Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, 1997. 
[22]

M. Hassell and R. May, Aggregation of predators and insect parasites and its effect on stability, The Journal of Animal Ecology, 43 (1974), 567-594.  doi: 10.2307/3384.

[23]

M. Hassell and T. Southwood, Foraging strategies of insects, Annual Review of Ecology and Systematics, 9 (1978), 75-98.  doi: 10.1146/annurev.es.09.110178.000451.

[24]

M. HassellO. MiramontesP. Rohani and R. May, Appropriate formulations for dispersal in spatially structured models: comments on bascompte & Solé, Journal of Animal Ecology, 64 (1995), 662-664.  doi: 10.2307/5808.

[25]

M. P. HassellH. N. Comins and R. M. May, Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.  doi: 10.1038/353255a0.

[26]

A. Hastings, Can spatial variation along lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251. 

[27]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372.  doi: 10.2307/1940066.

[28]

C. HauzyM. GauduchonF. D. Hulot and M. Loreau, Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, Journal of Theoretical Biology, 266 (2010), 458-469.  doi: 10.1016/j.jtbi.2010.07.008.

[29]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.

[30]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.

[31]

S. Hsu, On global stability of a predator-prey system, Mathematical Biosciences, 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.

[32]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.

[33]

V. Hutson, A theorem on average liapunov functions, Monatshefte für Mathematik, 98 (1984), 267-275.  doi: 10.1007/BF01540776.

[34]

V. Hutson and K. Schmit, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71.  doi: 10.1016/0025-5564(92)90078-B.

[35]

V. A. Jansen, Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74 (1995), 384-390.  doi: 10.2307/3545983.

[36]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theoretical Population Biology, 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.

[37]

V. A. A. Jansen, Theoretical Aspects of Metapopulation Dynamics, PhD thesis, Ph. D. thesis, Leiden University, The Netherlands, 1994.

[38]

Y. Kang and D. Armbruster, Dispersal effects on a discrete two-patch model for plant-insect interactions, Journal of Theoretical Biology, 268 (2011), 84-97.  doi: 10.1016/j.jtbi.2010.09.033.

[39]

Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79.  doi: 10.1080/17513758.2012.713125.

[40]

P. Kareiva and G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, American Naturalist,, 130 (1987), 233-270. 

[41]

P. KareivaA. Mullen and R. Southwood, Population dynamics in spatially complex environments: Theory and data [and discussion], Philosophical Transactions of the Royal Society of London B: Biological Sciences, 330 (1990), 175-190.  doi: 10.1098/rstb.1990.0191.

[42]

S. KéfiM. RietkerkM. van Baalen and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theoretical Population Biology, 71 (2007), 367-379. 

[43]

P. KlepacM. G. Neubert and P. van den Driessche, Dispersal delays, predator-prey stability, and the paradox of enrichment, Theoretical Population Biology, 71 (2007), 436-444.  doi: 10.1016/j.tpb.2007.02.002.

[44]

M. KummelD. Brown and A. Bruder, How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.  doi: 10.1111/j.1600-0706.2012.20805.x.

[45]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, Journal of Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.

[46]

I. Lengyel and I. R. Epstein, Diffusion-induced instability in chemically reacting systems: Steady-state multiplicity, oscillation, and chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 1 (1991), 69-76.  doi: 10.1063/1.165819.

[47]

S. A. Levin, Dispersion and population interactions, American Naturalist, 108 (1974), 207-228.  doi: 10.1086/282900.

[48]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237-240.  doi: 10.1093/besa/15.3.237.

[49]

Z.-z. LiM. GaoC. HuiX.-z. Han and H. Shi, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecological Modelling, 185 (2005), 245-254.  doi: 10.1016/j.ecolmodel.2004.12.008.

[50]

X. Liu and L. Chen, Complex dynamics of Holling type Ⅱ Lotka--Volterra predator--prey system with impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16 (2003), 311-320.  doi: 10.1016/S0960-0779(02)00408-3.

[51]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model ,Honor Thesis, from The College of William and Mary, 2010.

[52]

J. H. LoughrinD. A. PotterT. R. Hamilton-Kemp and M. E. Byers, Role of feeding-induced plant volatiles in aggregative behavior of the japanese beetle (coleoptera: Scarabaeidae), Environmental Entomology, 25 (1996), 1188-1191.  doi: 10.1093/ee/25.5.1188.

[53]

J. Madden, Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F.(Hymenoptera: Siricidae), Bulletin of Entomological Research, 67 (1977), 405-426.  doi: 10.1017/S0007485300011214.

[54]

L. Markus, Ⅱ. Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations (AM-36), Vol. Ⅲ, Princeton University Press, 1956, 17–30. doi: 10.1515/9781400882175-003.

[55]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model, The Journal of Animal Ecology, 47 (1978), 833-844.  doi: 10.2307/3674.

[56]

R. McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Mathematical Biosciences, 39 (1978), 11-51.  doi: 10.1016/0025-5564(78)90026-3.

[57]

T. F. MillerD. J. Mladenoff and M. K. Clayton, Old-growth northern hardwood forests: Spatial autocorrelation and patterns of understory vegetation, Ecological Monographs, 72 (2002), 487-503. 

[58]

W. W. MurdochC. J. BriggsR. M. NisbetW. S. Gurney and A. Stewart-Oaten, Aggregation and stability in metapopulation models, American Naturalist, 140 (1992), 41-58.  doi: 10.1086/285402.

[59]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.

[60]

M. ReesP. J. Grubb and D. Kelly, Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annuals, American Naturalist, 147 (1996), 1-32.  doi: 10.1086/285837.

[61]

M. Rietkerk and J. Van de Koppel, Regular pattern formation in real ecosystems, Trends in Ecology & Evolution, 23 (2008), 169-175.  doi: 10.1016/j.tree.2007.10.013.

[62]

P. Rohani and G. D. Ruxton, Dispersal and stability in metapopulations, Mathematical Medicine and Biology, 16 (1999), 297-306.  doi: 10.1093/imammb/16.3.297.

[63]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.

[64]

G. D. Ruxton, Density-dependent migration and stability in a system of linked populations, Bulletin of Mathematical Biology, 58 (1996), 643-660.  doi: 10.1007/BF02459477.

[65]

L. M. Schoonhoven, Plant recognition by lepidopterous larvae, (1972), 87–99.

[66]

L. M. Schoonhoven, On the variability of chemosensory information, The Host-Plant in Relation to Insect Behaviour and Reproduction, Symp. Biol. Hung., 16 (1976), 261–266. doi: 10.1007/978-1-4613-4274-8_42.

[67]

L. M. Schoonhoven, Chemosensory systems and feeding behavior in phytophagous insects, (1977), 391–398.

[68]

E. W. SeabloomO. N. BjørnstadB. M. Bolker and O. Reichman, Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands, Ecological Monographs, 75 (2005), 199-214.  doi: 10.1890/03-0841.

[69]

G. Seifert and L. Markus, Contributions to the Theory of Nonlinear Oscillations ,Princeton University Press, 1956.

[70]

Y. ShahakE. GalY. Offir and D. Ben-Yakir, Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops, International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions, 797 (2008), 75-80.  doi: 10.17660/ActaHortic.2008.797.8.

[71]

R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems ,Princeton University Press, Princeton, 2006.

[72]

A. SoroS. Sundberg and H. Rydin, Species diversity, niche metrics and species associations in harvested and undisturbed bogs, Journal of Vegetation Science, 10 (1999), 549-560.  doi: 10.2307/3237189.

[73]

H. R. Thieme, Mathematics in Population Biology ,Princeton University Press, 2003.

[74]

D. Tilman and P. M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions ,volume 30, Princeton University Press, 1997.

[75]

J. van de KoppelJ. C. GascoigneG. TheraulazM. RietkerkW. M. Mooij and P. M. Herman, Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322 (2008), 739-742. 

[76]

J. K. Waage, Behavioral Aspects of Foraging in the Parasitoid, Nemeritis Canescens (Grav. ) ,PhD Thesis, from University of London, 1977.

[77]

J. WangJ. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331.  doi: 10.1007/s00285-010-0332-1.

show all references

References:
[1]

L. Aarssen and R. Turkington, Biotic specialization between neighbouring genotypes in lolium perenne and trifolium repens from a permanent pasture, The Journal of Ecology, 73 (1985), 605-614.  doi: 10.2307/2260497.

[2]

R. F. Alder, Migration alone can produce persistence of host-parasitoid models, The American Naturalist, 141 (1993), 642-650. 

[3]

J. Bascompte and R. V. Solé, Spatially induced bifurcations in single-species population dynamics, Journal of Animal Ecology, 63 (1994), 256-264.  doi: 10.2307/5544.

[4]

B. M. Bolker and S. W. Pacala, Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal, The American Naturalist, 153 (1999), 575-602.  doi: 10.1086/303199.

[5]

C. J. BolterM. DickeJ. J. Van LoonJ. Visser and M. A. Posthumus, Attraction of colorado potato beetle to herbivore-damaged plants during herbivory and after its termination, Journal of Chemical Ecology, 23 (1997), 1003-1023.  doi: 10.1023/B:JOEC.0000006385.70652.5e.

[6]

C. Carroll and D. H. Janzen, Ecology of foraging by ants, Annual Review of Ecology and Systematics, 4 (1973), 231-257.  doi: 10.1146/annurev.es.04.110173.001311.

[7]

A. CasalJ. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential and Integral Equations, 7 (1994), 411-439. 

[8]

P. L. Chesson and W. W. Murdoch, Aggregation of risk: Relationships among host-parasitoid models, American Naturalist, 127 (1986), 696-715.  doi: 10.1086/284514.

[9]

W. C. Chewning, Migratory effects in predator-prey models, Mathematical Biosciences, 23 (1975), 253-262.  doi: 10.1016/0025-5564(75)90039-5.

[10]

R. Cressman and K. Vlastimil, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358.  doi: 10.1007/s00285-012-0548-3.

[11]

E. Curio, The Ethology of Predation ,Springer-Verlag Berlin Heidelberg, 7 1976. doi: 10.1007/978-3-642-81028-2.

[12]

M. Doebli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106.  doi: 10.1006/tpbi.1995.1004.

[13]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, Journal of Applied Analysis and Computation, 1 (2011), 193-203. 

[14]

J. Ford, The Role of the Trypanosomiases in African Ecology. A Study of the Tsetse Fly Problem, in Oxford University Press, Oxford, 1971.

[15]

A. G. Gatehouse, Permanence and the dynamics of biological systems, Host Finding Behaviour Of Tsetse Flies, (1972), 83-95. 

[16]

S. Ghosh and S. Bhattacharyya, A two-patch prey-predator model with food-gathering activity, Journal of Applied Mathematics and Computing, 37 (2011), 497-521.  doi: 10.1007/s12190-010-0446-z.

[17]

M. Gillies and T. Wilkes, The range of attraction of single baits for some West African mosquitoes, Bulletin of Entomological Research, 60 (1970), 225-235.  doi: 10.1017/S000748530004075X.

[18]

M. Gillies and T. Wilkes, The range of attraction of animal baits and carbon dioxide for mosquitoes, Bulletin of Entomological Research, 61 (1972), 389-404. 

[19]

M. Gillies and T. Wilkes, The range of attraction of birds as baits for some west african mosquitoes (diptera, culicidae), Bulletin of Entomological Research, 63 (1974), 573-582.  doi: 10.1017/S0007485300047817.

[20] I. Hanski, Metapopulation Ecology, Oxford University Press, Oxford, 1999. 
[21] I. A. Hanski and M. E. Gilpin, Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, 1997. 
[22]

M. Hassell and R. May, Aggregation of predators and insect parasites and its effect on stability, The Journal of Animal Ecology, 43 (1974), 567-594.  doi: 10.2307/3384.

[23]

M. Hassell and T. Southwood, Foraging strategies of insects, Annual Review of Ecology and Systematics, 9 (1978), 75-98.  doi: 10.1146/annurev.es.09.110178.000451.

[24]

M. HassellO. MiramontesP. Rohani and R. May, Appropriate formulations for dispersal in spatially structured models: comments on bascompte & Solé, Journal of Animal Ecology, 64 (1995), 662-664.  doi: 10.2307/5808.

[25]

M. P. HassellH. N. Comins and R. M. May, Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.  doi: 10.1038/353255a0.

[26]

A. Hastings, Can spatial variation along lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251. 

[27]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372.  doi: 10.2307/1940066.

[28]

C. HauzyM. GauduchonF. D. Hulot and M. Loreau, Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, Journal of Theoretical Biology, 266 (2010), 458-469.  doi: 10.1016/j.jtbi.2010.07.008.

[29]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.

[30]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.

[31]

S. Hsu, On global stability of a predator-prey system, Mathematical Biosciences, 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.

[32]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.

[33]

V. Hutson, A theorem on average liapunov functions, Monatshefte für Mathematik, 98 (1984), 267-275.  doi: 10.1007/BF01540776.

[34]

V. Hutson and K. Schmit, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71.  doi: 10.1016/0025-5564(92)90078-B.

[35]

V. A. Jansen, Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74 (1995), 384-390.  doi: 10.2307/3545983.

[36]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theoretical Population Biology, 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.

[37]

V. A. A. Jansen, Theoretical Aspects of Metapopulation Dynamics, PhD thesis, Ph. D. thesis, Leiden University, The Netherlands, 1994.

[38]

Y. Kang and D. Armbruster, Dispersal effects on a discrete two-patch model for plant-insect interactions, Journal of Theoretical Biology, 268 (2011), 84-97.  doi: 10.1016/j.jtbi.2010.09.033.

[39]

Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79.  doi: 10.1080/17513758.2012.713125.

[40]

P. Kareiva and G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, American Naturalist,, 130 (1987), 233-270. 

[41]

P. KareivaA. Mullen and R. Southwood, Population dynamics in spatially complex environments: Theory and data [and discussion], Philosophical Transactions of the Royal Society of London B: Biological Sciences, 330 (1990), 175-190.  doi: 10.1098/rstb.1990.0191.

[42]

S. KéfiM. RietkerkM. van Baalen and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theoretical Population Biology, 71 (2007), 367-379. 

[43]

P. KlepacM. G. Neubert and P. van den Driessche, Dispersal delays, predator-prey stability, and the paradox of enrichment, Theoretical Population Biology, 71 (2007), 436-444.  doi: 10.1016/j.tpb.2007.02.002.

[44]

M. KummelD. Brown and A. Bruder, How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.  doi: 10.1111/j.1600-0706.2012.20805.x.

[45]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, Journal of Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.

[46]

I. Lengyel and I. R. Epstein, Diffusion-induced instability in chemically reacting systems: Steady-state multiplicity, oscillation, and chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 1 (1991), 69-76.  doi: 10.1063/1.165819.

[47]

S. A. Levin, Dispersion and population interactions, American Naturalist, 108 (1974), 207-228.  doi: 10.1086/282900.

[48]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237-240.  doi: 10.1093/besa/15.3.237.

[49]

Z.-z. LiM. GaoC. HuiX.-z. Han and H. Shi, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecological Modelling, 185 (2005), 245-254.  doi: 10.1016/j.ecolmodel.2004.12.008.

[50]

X. Liu and L. Chen, Complex dynamics of Holling type Ⅱ Lotka--Volterra predator--prey system with impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16 (2003), 311-320.  doi: 10.1016/S0960-0779(02)00408-3.

[51]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model ,Honor Thesis, from The College of William and Mary, 2010.

[52]

J. H. LoughrinD. A. PotterT. R. Hamilton-Kemp and M. E. Byers, Role of feeding-induced plant volatiles in aggregative behavior of the japanese beetle (coleoptera: Scarabaeidae), Environmental Entomology, 25 (1996), 1188-1191.  doi: 10.1093/ee/25.5.1188.

[53]

J. Madden, Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F.(Hymenoptera: Siricidae), Bulletin of Entomological Research, 67 (1977), 405-426.  doi: 10.1017/S0007485300011214.

[54]

L. Markus, Ⅱ. Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations (AM-36), Vol. Ⅲ, Princeton University Press, 1956, 17–30. doi: 10.1515/9781400882175-003.

[55]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model, The Journal of Animal Ecology, 47 (1978), 833-844.  doi: 10.2307/3674.

[56]

R. McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Mathematical Biosciences, 39 (1978), 11-51.  doi: 10.1016/0025-5564(78)90026-3.

[57]

T. F. MillerD. J. Mladenoff and M. K. Clayton, Old-growth northern hardwood forests: Spatial autocorrelation and patterns of understory vegetation, Ecological Monographs, 72 (2002), 487-503. 

[58]

W. W. MurdochC. J. BriggsR. M. NisbetW. S. Gurney and A. Stewart-Oaten, Aggregation and stability in metapopulation models, American Naturalist, 140 (1992), 41-58.  doi: 10.1086/285402.

[59]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.

[60]

M. ReesP. J. Grubb and D. Kelly, Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annuals, American Naturalist, 147 (1996), 1-32.  doi: 10.1086/285837.

[61]

M. Rietkerk and J. Van de Koppel, Regular pattern formation in real ecosystems, Trends in Ecology & Evolution, 23 (2008), 169-175.  doi: 10.1016/j.tree.2007.10.013.

[62]

P. Rohani and G. D. Ruxton, Dispersal and stability in metapopulations, Mathematical Medicine and Biology, 16 (1999), 297-306.  doi: 10.1093/imammb/16.3.297.

[63]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.

[64]

G. D. Ruxton, Density-dependent migration and stability in a system of linked populations, Bulletin of Mathematical Biology, 58 (1996), 643-660.  doi: 10.1007/BF02459477.

[65]

L. M. Schoonhoven, Plant recognition by lepidopterous larvae, (1972), 87–99.

[66]

L. M. Schoonhoven, On the variability of chemosensory information, The Host-Plant in Relation to Insect Behaviour and Reproduction, Symp. Biol. Hung., 16 (1976), 261–266. doi: 10.1007/978-1-4613-4274-8_42.

[67]

L. M. Schoonhoven, Chemosensory systems and feeding behavior in phytophagous insects, (1977), 391–398.

[68]

E. W. SeabloomO. N. BjørnstadB. M. Bolker and O. Reichman, Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands, Ecological Monographs, 75 (2005), 199-214.  doi: 10.1890/03-0841.

[69]

G. Seifert and L. Markus, Contributions to the Theory of Nonlinear Oscillations ,Princeton University Press, 1956.

[70]

Y. ShahakE. GalY. Offir and D. Ben-Yakir, Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops, International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions, 797 (2008), 75-80.  doi: 10.17660/ActaHortic.2008.797.8.

[71]

R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems ,Princeton University Press, Princeton, 2006.

[72]

A. SoroS. Sundberg and H. Rydin, Species diversity, niche metrics and species associations in harvested and undisturbed bogs, Journal of Vegetation Science, 10 (1999), 549-560.  doi: 10.2307/3237189.

[73]

H. R. Thieme, Mathematics in Population Biology ,Princeton University Press, 2003.

[74]

D. Tilman and P. M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions ,volume 30, Princeton University Press, 1997.

[75]

J. van de KoppelJ. C. GascoigneG. TheraulazM. RietkerkW. M. Mooij and P. M. Herman, Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322 (2008), 739-742. 

[76]

J. K. Waage, Behavioral Aspects of Foraging in the Parasitoid, Nemeritis Canescens (Grav. ) ,PhD Thesis, from University of London, 1977.

[77]

J. WangJ. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331.  doi: 10.1007/s00285-010-0332-1.

Figure 1.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.25$, and $a_2=0.15$. The left figure (1a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (1b) describes the number of interior equilibria and their stability when $\rho_2=0.025$ and $\rho_1$ changes from 0 to 0.5 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Figure 4.  One dimensional bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$ and $a_1=0.25$. The left figure (4a) describes describes the number of interior equilibria and their stability when $\rho_1=0.5$ and $\rho_2$ changes from 0 to 0.05. The right figure (4b) describes the number of interior equilibria and their stability when $\rho_1=0.6$ and $\rho_2$ changes from 0 to 1.8. In both figures, blue represents the sink; green represents the saddle; and red represents the source
Figure 2.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.25$ and $a_2=0.25$. The left figure (2a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (2b) describes the number of interior equilibria and their stability when $\rho_1=1$ and $\rho_2$ changes from 0 to 2.5 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Figure 3.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.35$ and $a_2=0.25$. The left figure (3a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (3b) describes the number of interior equilibria and their stability when $\rho_1=1$ and $\rho_2$ changes from 0 to 7 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Table 1.  The comparison of boundary equilibria between Model (4) and Model (12). LAS refers to the local asymptotical stability, and GAS refers to the global stability
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
$E_{K_10K_20}$ LAS and GAS if $\mu_i>K_i$ for both $i=1,2$. Dispersal has no effects on its stability. GAS if $\mu_i>K_i$ for both $i=1,2$; While LAS if $d_1+d_2+\rho_1+\rho_2>\frac{a_1K_1}{1+K_1}+\frac{a_2K_2}{1+K_2}$ and $\left[ d_1-\frac{a_1K_1}{1+K_1}\right]\left[1-\frac{a_2K_2}{(d_2+\rho_2)(1+K_2)}\right]+\frac{\rho_1}{d_2+\rho_2}\left[ d_2-\frac{a_2K_2}{1+K_2}\right]>0$. Large dispersal may be able to stabilize the equilibrium.
$E_{i2}^b$ ($y_i=0$) LAS if $\frac{K_i-1}{2}<\mu_i<K_i$ and one of the conditions sa, sb, sc, sd in Theorem 3.2 holds. Large dispersal has potential to either stabilize or stabilize the equilibrium. Does not exists
$E_i^b$ ($x_i=0$) Does not exists LAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $r_j<a_j\hat{\nu}_j^i$. GAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $\frac{r_j(K_j+1)^2}{4a_jK_j}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ will either destroy or destabilize the equilibrium while large dispersal of predator in Patch $j$ may stabilize the equilibrium.
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
$E_{K_10K_20}$ LAS and GAS if $\mu_i>K_i$ for both $i=1,2$. Dispersal has no effects on its stability. GAS if $\mu_i>K_i$ for both $i=1,2$; While LAS if $d_1+d_2+\rho_1+\rho_2>\frac{a_1K_1}{1+K_1}+\frac{a_2K_2}{1+K_2}$ and $\left[ d_1-\frac{a_1K_1}{1+K_1}\right]\left[1-\frac{a_2K_2}{(d_2+\rho_2)(1+K_2)}\right]+\frac{\rho_1}{d_2+\rho_2}\left[ d_2-\frac{a_2K_2}{1+K_2}\right]>0$. Large dispersal may be able to stabilize the equilibrium.
$E_{i2}^b$ ($y_i=0$) LAS if $\frac{K_i-1}{2}<\mu_i<K_i$ and one of the conditions sa, sb, sc, sd in Theorem 3.2 holds. Large dispersal has potential to either stabilize or stabilize the equilibrium. Does not exists
$E_i^b$ ($x_i=0$) Does not exists LAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $r_j<a_j\hat{\nu}_j^i$. GAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $\frac{r_j(K_j+1)^2}{4a_jK_j}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ will either destroy or destabilize the equilibrium while large dispersal of predator in Patch $j$ may stabilize the equilibrium.
Table 2.  The comparison of prey persistence and extinction between Model (4) and Model (12)
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of prey Always persist, dispersal of predator has no effects One or both prey persist if conditions 4. in Theorem (4.1) holds. Small dispersal of predator in Patch $i$ and large dispersal of predator in Patch $j$ can help the persistence of prey in Patch $i$.
Extinction of prey Never extinct $x_i$ extinct if $\frac{K_j-1}{2}<\widehat{\mu}_j<K_j$ and $\frac{r_i(K_i+1)^2}{4a_iK_i}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ can promote the extinction of prey in Patch $i$.
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of prey Always persist, dispersal of predator has no effects One or both prey persist if conditions 4. in Theorem (4.1) holds. Small dispersal of predator in Patch $i$ and large dispersal of predator in Patch $j$ can help the persistence of prey in Patch $i$.
Extinction of prey Never extinct $x_i$ extinct if $\frac{K_j-1}{2}<\widehat{\mu}_j<K_j$ and $\frac{r_i(K_i+1)^2}{4a_iK_i}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ can promote the extinction of prey in Patch $i$.
Table 3.  The comparison of predator persistence and extinction between Model (4) and Model (12)
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of predator Predator at Patch $j$ is persistent if Conditions in Theorem 3.6 holds. Small dispersal of predator in Patch $j$ can help the persistence of predator in that patch. Dispersal is able to promote the persistence of predator when predator goes extinct in the single patch model. Predators in both patches have the same persistence conditions. They persist if $0<{\mu}_i<K_i$ for $i=1,2$. Dispersal seems to have no effects in the persistence of predator.
Extinction of predator Simulations suggestions (see the yellow regions of Figure (1a) and Figure (3a)) that the large dispersal of predator in Patch $i$ may lead to the its own extinction. Predators in both patches have the same extinction conditions. They go extinct if ${\mu}_i>K_i$ or $\mu_i<0$ for $i=1,2$
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of predator Predator at Patch $j$ is persistent if Conditions in Theorem 3.6 holds. Small dispersal of predator in Patch $j$ can help the persistence of predator in that patch. Dispersal is able to promote the persistence of predator when predator goes extinct in the single patch model. Predators in both patches have the same persistence conditions. They persist if $0<{\mu}_i<K_i$ for $i=1,2$. Dispersal seems to have no effects in the persistence of predator.
Extinction of predator Simulations suggestions (see the yellow regions of Figure (1a) and Figure (3a)) that the large dispersal of predator in Patch $i$ may lead to the its own extinction. Predators in both patches have the same extinction conditions. They go extinct if ${\mu}_i>K_i$ or $\mu_i<0$ for $i=1,2$
[1]

Jinfeng Wang, Hongxia Fan. Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 909-918. doi: 10.3934/dcdsb.2016.21.909

[2]

Xiaoqing Lin, Yancong Xu, Daozhou Gao, Guihong Fan. Bifurcation and overexploitation in Rosenzweig-MacArthur model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022094

[3]

Razvan C. Fetecau, Beril Zhang. Self-organization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397-426. doi: 10.3934/jgm.2019020

[4]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[5]

Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3747-3785. doi: 10.3934/dcds.2022031

[6]

Wei Feng, Nicole Rocco, Michael Freeze, Xin Lu. Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1215-1230. doi: 10.3934/dcdss.2014.7.1215

[7]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[8]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[9]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[10]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[11]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[14]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[15]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[16]

J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059

[17]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[18]

Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1649-1670. doi: 10.3934/dcdsb.2019245

[19]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[20]

Pankaj Kumar, Shiv Raj. Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021035

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (448)
  • HTML views (65)
  • Cited by (11)

Other articles
by authors

[Back to Top]