[1]
|
I. Al-Darabsah and Y. Yuan, A time-delayed epidemic model for Ebola disease transmission, Appl. Math. Comput., 290 (2016), 307-325.
doi: 10.1016/j.amc.2016.05.043.
|
[2]
|
G. Bocharov, B. Ludewig, A. Bertoletti, P. Klenerman, T. Junt, P. Krebs, T. Luzyanina, C. Fraser and R. Anderson, Underwhelming the immune response: Effect of slow virus growth on CD8+T lymphocytes responses, J. Virol., 78 (2004), 2247-2254.
doi: 10.1128/JVI.78.5.2247-2254.2004.
|
[3]
|
S. Chen, C. Cheng and Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016), 642-672.
doi: 10.1016/j.jmaa.2016.05.003.
|
[4]
|
R. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+T cells, Math. Biosci., 165 (2000), 27-39.
doi: 10.1016/S0025-5564(00)00006-7.
|
[5]
|
R. De Boer, Which of our modeling predictions are robust? PLoS Comput. Biol., 8 (2012), e10002593, 5pp.
doi: 10.1371/journal.pcbi.1002593.
|
[6]
|
O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[7]
|
T. Gao, W. Wang and X. Liu, Mathematical analysis of an HIV model with impulsive antiretroviral drug doses, Math. Comput. Simulation, 82 (2011), 653-665.
doi: 10.1016/j.matcom.2011.10.007.
|
[8]
|
J. Hale and S. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[9]
|
M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Parageorgopolous, E. Wieder, D. Schmidt, R. Hoh, R. Neese, D. Macallan, S. Deeks and J. M. McCune, Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nat. Med., 5 (1999), 83-89.
doi: 10.1038/4772.
|
[10]
|
M. Hirsh, H. Hanisch and P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pur. Appl. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607.
|
[11]
|
Y. Ji and L. Liu, Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate, Discrete Contin. Dyn. Syst. Ser. B., 21 (2016), 133-149.
doi: 10.3934/dcdsb.2016.21.133.
|
[12]
|
C. Jiang and W. Wang, Complete classification of global dynamics of a virus model with immune responses, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014), 1087-1103.
doi: 10.3934/dcdsb.2014.19.1087.
|
[13]
|
T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug
resistance, Proc. Natl. Acad. Sci., USA, 95 (1998), 11514–11519.
doi: 10.1073/pnas.95.20.11514.
|
[14]
|
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
doi: 10.1016/j.bulm.2004.02.001.
|
[15]
|
J. Li, Y. Yang and Y. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. Real World Appl., 12 (2011), 2163-2173.
doi: 10.1016/j.nonrwa.2010.12.030.
|
[16]
|
B. Li, Y. Chen, X. Lu and S. Liu, A delayed HIV-1 model with virus waning term, Math.
Biosci. Eng., 13 (2016), 135-157.
doi: 10.3934/mbe.2016.13.135.
|
[17]
|
J. Luo, W. Wang, H. Chen and R. Fu, Bifurcations of a mathematical model for HIV dynamics, J. Math. Anal. Appl., 434 (2016), 837-857.
doi: 10.1016/j.jmaa.2015.09.048.
|
[18]
|
Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011), 14-27.
doi: 10.1016/j.jmaa.2010.08.025.
|
[19]
|
P. Nelson, J. Mittler and A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters, J. AIDS, 26 (2001), 405-412.
doi: 10.1097/00126334-200104150-00002.
|
[20]
|
M. Nowak and R. May,
Virus Dynamics: Mathematical Principles of Immunology Virology, Oxford University Press, Oxford, 2000.
|
[21]
|
M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in
hepatitis B virus infection, Proc. Natl. Acad. Sci., USA, 93 (1996), 4398–4402.
doi: 10.1073/pnas.93.9.4398.
|
[22]
|
K. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98-109.
doi: 10.1016/j.mbs.2011.11.002.
|
[23]
|
J. Pang, J. Cui and J. Hui, The importance of immune rsponses in a model of hepatitis B virus, Nonlinear Dyn., 67 (2012), 727-734.
doi: 10.1007/s11071-011-0022-6.
|
[24]
|
H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response, J. Southeast Univ. Nat. Sci., 30 (2005), 796-799.
|
[25]
|
A. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev., 41 (1999), 3-44.
doi: 10.1137/S0036144598335107.
|
[26]
|
A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
doi: 10.1126/science.271.5255.1582.
|
[27]
|
L. Rong and A. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J.
Theoret. Biol., 260 (2009), 308-331.
doi: 10.1016/j.jtbi.2009.06.011.
|
[28]
|
L. Rong, M. Gilchristb, Z. Feng and A. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, J. Theoret. Biol., 247 (2007), 804-818.
doi: 10.1016/j.jtbi.2007.04.014.
|
[29]
|
H. Shu and L. Wang, Role of CD4+T-cell proliferation in HIV infection under antiretroviral therapy, J. Math. Anal. Appl., 394 (2012), 529-544.
doi: 10.1016/j.jmaa.2012.05.027.
|
[30]
|
H. Smith, Monotone Dynamical System: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.
doi: 10.1090/surv/041.
|
[31]
|
H. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[32]
|
X. Song, S. Wang and J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl., 373 (2011), 345-355.
doi: 10.1016/j.jmaa.2010.04.010.
|
[33]
|
M. Stafford, L. Corey, Y. Cao, E. Daar, D. Ho and A. Perelson, Modeling plasma virus concentration during primary HIV infection, J. Theoret. Biol., 203 (2000), 285-301.
doi: 10.1006/jtbi.2000.1076.
|
[34]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[35]
|
K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses, Comput. Math. Appl., 51 (2006), 1593-1610.
doi: 10.1016/j.camwa.2005.07.020.
|
[36]
|
K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response, Chaos Solitons Fractals, 28 (2006), 90-99.
doi: 10.1016/j.chaos.2005.05.003.
|
[37]
|
X. Wang and W. Wang, An HIV infection model based on a vectored immunoprophylaxis experiment, J. Theoret. Biol., 313 (2012), 127-135.
doi: 10.1016/j.jtbi.2012.08.023.
|
[38]
|
Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219 (2009), 104-112.
doi: 10.1016/j.mbs.2009.03.003.
|
[39]
|
K. Wang, Y. Jin and A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014), 3379-3396.
doi: 10.3934/dcdsb.2014.19.3379.
|
[40]
|
Z. Wang and R. Xu, Stability and Hopf bifurcation in a viral infection modelwith nonlinear incidence rate and delayed immune response, Commun Nonlinear Sci Numer Simulat., 17 (2012), 964-978.
doi: 10.1016/j.cnsns.2011.06.024.
|
[41]
|
D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.
doi: 10.1099/vir.0.19118-0.
|
[42]
|
Y. Yan and W. Wang, Global stability of a five-dimensional model with immune response and delay, Discrete Contin. Dyn. Syst. Ser. B., 17 (2012), 401-416.
doi: 10.3934/dcdsb.2012.17.401.
|
[43]
|
Y. Yang and Y. Xiao, Threshold dynamics for an HIV model in periodic environments, J. Math. Anal. Appl., 361 (2010), 59-68.
doi: 10.1016/j.jmaa.2009.09.012.
|
[44]
|
Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183-191.
doi: 10.1016/j.mbs.2015.05.001.
|
[45]
|
Y. Yang and Y. Xu, Global stability of a diffusive and delayed virus dynamics model with Beddington -DeAngelis incidence function and CTL immune response, Comput. Math. Appl., 71 (2016), 922-930.
doi: 10.1016/j.camwa.2016.01.009.
|
[46]
|
J. Zack, S. Arrigo, S. Weitsman, A. Go, A. Haislip and I. Chen, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viral structure, Cell, 61 (1990), 213-222.
doi: 10.1016/0092-8674(90)90802-L.
|
[47]
|
X. Zhou, X. Song and X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math. Comput., 199 (2008), 23-38.
doi: 10.1016/j.amc.2007.09.030.
|