[1]
|
M. E. Adelson, R. V. S. Rao and R. C. Tilton, et al., Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey, J. Cli. Micro., 42 (2004), 2799-2801.
doi: 10.1128/JCM.42.6.2799-2801.2004.
|
[2]
|
F. R. Adler, J. M. Pearce-Duvet and M. D. Dearing, How host population dynamics translate into time-lagged prevalence: An investigation of Sin Nombre virus in deer mice, Bull. Math. Biol., 70 (2008), 236-252.
doi: 10.1007/s11538-007-9251-8.
|
[3]
|
C. Alvey, Z. Feng and J. Glasser, A model for the coupled disease dynamics of HIV and HSV-2 with mixing among and between genders, Math. Biosci., 265 (2015), 82-100.
doi: 10.1016/j.mbs.2015.04.009.
|
[4]
|
E. A. Belongia, Epidemiology and impact of coinfections acquired from Ixodes ticks, Vector-Borne and Zoonotic Dis., 2 (2002), 265-273.
|
[5]
|
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 5 (2009), 1-13.
doi: 10.1098/rsif.2009.0386.
|
[6]
|
M. A. Diuk-Wasser, E. Vannier and P. J. Krause, Coinfection by Ixodes tick-borne pathogens: Ecological, epidemiological, and clinical consequences, Trends Para., 32 (2016), 30-42.
doi: 10.1016/j.pt.2015.09.008.
|
[7]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[8]
|
G. Fan, Y. Lou, H. R. Thieme and J. Wu, Stability and persistence in ODE models for populations with many stages, Math. Biosci. Eng., 12 (2015), 661-686.
doi: 10.3934/mbe.2015.12.661.
|
[9]
|
G. Fan, H. R. Thieme and H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015), 1017-1048.
doi: 10.1007/s00285-014-0845-0.
|
[10]
|
D. Gao, Y. Lou and S. Ruan, A periodic Ross-Macdonald model in a patchy environment, Dis. Cont. Dyn. Syst.-B, 19 (2014), 3133-3145.
doi: 10.3934/dcdsb.2014.19.3133.
|
[11]
|
D. Gao, T. C. Porco and S. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016), 171-188.
doi: 10.1016/j.jmaa.2016.04.039.
|
[12]
|
E. J. Goldstein, C. Thompson, A. Spielman and P. J. Krause, Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis, Clin. Inf. Dis., 33 (2001), 676-685.
|
[13]
|
L. Halos, T. Jamal and R. Maillard, et al., Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp., Veterinary Res., 361 (2005), 79-87.
doi: 10.1051/vetres:2004052.
|
[14]
|
J. M. Heffernan, Y. Lou and J. Wu, Range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi by migratory birds, Dis. Cont. Dyn. Syst.-B, 19 (2014), 3147-3167.
doi: 10.3934/dcdsb.2014.19.3147.
|
[15]
|
M. H. Hersh, R. S. Ostfeld and D. J. McHenry et al., Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts, PloS one, 9 (2014), e99348.
doi: 10.1371/journal.pone.0099348.
|
[16]
|
M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dyn. Differ. Equ., 13 (2001), 107-131.
doi: 10.1023/A:1009044515567.
|
[17]
|
Y. Lou, J. Wu and X. Wu, Impact of biodiversity and seasonality on Lyme-pathogen transmission, Theo. Biol. Med. Modell., 11 (2014), 50.
doi: 10.1186/1742-4682-11-50.
|
[18]
|
Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011), 2384-2407.
doi: 10.1007/s11538-011-9628-6.
|
[19]
|
P. D. Mitchell, K. D. Reed and J. M. Hofkes, Immunoserologic evidence of coinfection with Borrelia burgdorferi, Babesia microti, and human granulocytic Ehrlichia species in residents of Wisconsin and Minnesota, J. Cli. Biol., 34 (1996), 724-727.
|
[20]
|
S. Moutailler, C. V. Moro and E. Vaumourin et al., Co-infection of ticks: The rule rather than the exception, PLoS Negl. Trop. Dis., 10 (2016), e0004539.
doi: 10.1371/journal.pntd.0004539.
|
[21]
|
J. M. Mutua, F. B. Wang and N. K. Vaidya, Modeling malaria and typhoid fever co-infection dynamics, Math. Biosci., 264 (2015), 128-144.
doi: 10.1016/j.mbs.2015.03.014.
|
[22]
|
N. H. Ogden, L. St-Onge and I. K. Barker et al., Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis in Canada now and with climate change, Int. J. Heal. Geog., 7 (2008), 24.
doi: 10.1186/1476-072X-7-24.
|
[23]
|
A. R. Plourde and E. M. Bloch, A literature review of Zika virus, Emerg. Inf. Dise., 22 (2016), 1185-1192.
doi: 10.3201/eid2207.151990.
|
[24]
|
H. C. Slater, M. Gambhir, P. E. Parham and E. Michael, Modelling co-infection with malaria and lymphatic filariasis, PLoS Comput. Biol., 9 (2013), e1003096, 14pp.
doi: 10.1371/journal.pcbi.1003096.
|
[25]
|
H. L. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Providence, RI: Math. Surveys Monogr., 41, AMS, 1995.
|
[26]
|
F. E. Steiner, R. R. Pinger and C. N. Vann, et al., Infection and co-infection rates of Anaplasma phagocytophilum variants, Babesia spp., Borrelia burgdorferi, and the rickettsial endosymbiont in Ixodes scapularis (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin, J. Med. Entom., 45 (2008), 289-297.
|
[27]
|
G. Stinco and S. Bergamo, Impact of co-infections in Lyme disease, Open Dermatology J., 10 (2016), 55-61.
doi: 10.2174/1874372201610010055.
|
[28]
|
S. J. Swanson, D. Neitzel, K. D. Reed and E. A. Belongia, Coinfections acquired from Ixodes ticks, Cli. Micro. Rev., 19 (2006), 708-727.
doi: 10.1128/CMR.00011-06.
|
[29]
|
B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623.
doi: 10.1038/srep35623.
|
[30]
|
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267.
|
[31]
|
W. Wang and X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.
doi: 10.1137/140981769.
|
[32]
|
X. Wu, V. R. Duvvuri and Y. Lou, et al., Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, J. Theo. Biol., 319 (2013), 50-61.
doi: 10.1016/j.jtbi.2012.11.014.
|
[33]
|
X. -Q. Zhao,
Dynamical Systems in Population Biology, New York: Springer, 2003.
doi: 10.1007/978-0-387-21761-1.
|
[34]
|
X.-Q. Zhao and Z. Jing, Global asymptotic behavior in some cooperative systems of functional-differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.
|