In this paper, a time periodic and two–group reaction–diffusion epidemic model with distributed delay is proposed and investigated. We firstly introduce the basic reproduction number $R_0$ for the model via the next generation operator method. We then establish the threshold dynamics of the model in terms of $R_0$, that is, the disease is uniformly persistent if $R_0 > 1$, while the disease goes to extinction if $R_0 < 1$. Finally, we study the global dynamics for the model in a special case when all the coefficients are independent of spatio–temporal variables.
Citation: |
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious disease, Ecol. Lett., 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x.![]() ![]() |
[2] |
R. M. Anderson, Discussion: the Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol., 53 (1991), 3-32.
doi: 10.1007/BF02464422.![]() ![]() |
[3] |
R. M. Anderson and R. May,
Infectious Diseases of Humanns: Dynamics and Control, Oxford University Press, Oxford, 1991.
![]() |
[4] |
N. Bacaër, D. Ait and H. El, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762.
doi: 10.1007/s00285-010-0354-8.![]() ![]() ![]() |
[5] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector–borne disease with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.![]() ![]() ![]() |
[6] |
E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.
doi: 10.1016/S0362-546X(01)00528-4.![]() ![]() ![]() |
[7] |
B. Bonzi, A. A. Fall, A. Iggidr and G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biol., 62 (2011), 39-64.
doi: 10.1007/s00285-010-0327-y.![]() ![]() ![]() |
[8] |
F. Brauer, Compartmental models in epidemiology, Mathematical Epidemiology, Springer, 56 (2008), 19-79.
doi: 10.1007/978-3-540-78911-6_2.![]() ![]() ![]() |
[9] |
L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach space, Arch. Math., 56 (1991), 49-57.
doi: 10.1007/BF01190081.![]() ![]() ![]() |
[10] |
L. Cai, M. Martcheva and X.-Z. Li, Competitive exclusion in a vector-host epidemic model with distributed delay, J. Biol. Dyn., 7 (2013), 47-67.
doi: 10.1080/17513758.2013.772253.![]() ![]() ![]() |
[11] |
D. Dancer and P. Koch Medina, Abstract ecolution equations, Periodic problem and applications, Longman, Harlow, UK, 1992.
![]() ![]() |
[12] |
O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.![]() ![]() ![]() |
[13] |
W. E. Fitzgibbon, M. Langlais, M. E. Parrott and G. F. Webb, A diffusive system with age dependency modeling FIV, Nonlinear Anal., 25 (1995), 975-989.
doi: 10.1016/0362-546X(95)00092-A.![]() ![]() ![]() |
[14] |
W. E. Fitzgibbon, C. B. Martin and J. J. Morgan, A diffusive epidemic model with criss–cross dynamics, J. Math. Anal. Appl., 184 (1994), 399-414.
doi: 10.1006/jmaa.1994.1209.![]() ![]() ![]() |
[15] |
W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci., 128 (1995), 131-155.
doi: 10.1016/0025-5564(94)00070-G.![]() ![]() ![]() |
[16] |
D. Gao and S. Ruan, Malaria models with spatial effects, John Wiley & Sons. (in press)
![]() |
[17] |
I. Gudelj, K. A. J. White and N. F. Britton, The effects of spatial movement and group interactions on disease dynamics of social animals, Bull. Math. Biol., 66 (2004), 91-108.
doi: 10.1016/S0092-8240(03)00075-2.![]() ![]() ![]() |
[18] |
Z. Guo, F.-B. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non–local infections, J. Math. Biol., 65 (2012), 1387-1410.
doi: 10.1007/s00285-011-0500-y.![]() ![]() ![]() |
[19] |
P. Hess, Periodic–Parabolic Boundary Value Problems and Positivity, Longman Scientific and
Technical, Harlow, UK, 1991.
![]() ![]() |
[20] |
H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.![]() ![]() ![]() |
[21] |
W. Huang, K. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple–group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835-854.
doi: 10.1137/0152047.![]() ![]() ![]() |
[22] |
G. Huang and A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691.
doi: 10.1016/j.aml.2013.01.010.![]() ![]() ![]() |
[23] |
J. M. Hyman and J. Li, Differential susceptibility epidemic models, J. Math. Biol., 50 (2005), 626-644.
doi: 10.1007/s00285-004-0301-7.![]() ![]() |
[24] |
H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.
doi: 10.1007/s00285-011-0463-z.![]() ![]() ![]() |
[25] |
Y. Jin and X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496-2516.
doi: 10.1137/070709761.![]() ![]() ![]() |
[26] |
T. Kato,
Peturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelerg, 1976.
![]() ![]() |
[27] |
J. Li and X. Zou, Generalization of the Kermack–McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118.
doi: 10.1051/mmnp/20094205.![]() ![]() ![]() |
[28] |
J. Li and X. Zou, Dynamics of an epidemic model with non–local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686.
doi: 10.1007/s00285-009-0280-9.![]() ![]() ![]() |
[29] |
M. Li, Z. Shuai and C. Wang, Global stability of multi–group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47.
doi: 10.1016/j.jmaa.2009.09.017.![]() ![]() ![]() |
[30] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
[31] |
Y. Lou and X.-Q. Zhao, Threshold dynamics in a time–delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.
doi: 10.3934/dcdsb.2009.12.169.![]() ![]() ![]() |
[32] |
Y. Lou and X.-Q. Zhao, A reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8.![]() ![]() ![]() |
[33] |
Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with deasonal developmental durations, J Nonlinear Sci., 27 (2017), 573-603.
doi: 10.1007/s00332-016-9344-3.![]() ![]() ![]() |
[34] |
P. Magal and C. McCluskey, Two–group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.
doi: 10.1137/120882056.![]() ![]() ![]() |
[35] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.![]() ![]() ![]() |
[36] |
M. Martcheva,
An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, Springer, New York, 2015.
doi: 10.1007/978-1-4899-7612-3.![]() ![]() ![]() |
[37] |
R. Martain and H. L. Smith, Abstract functional differential equations and reaction–diffusion system, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.![]() ![]() ![]() |
[38] |
C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014.![]() ![]() ![]() |
[39] |
C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78.
doi: 10.1016/j.nonrwa.2015.05.003.![]() ![]() ![]() |
[40] |
J. D. Murray,
Mathematical Biology, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-662-08539-4.![]() ![]() ![]() |
[41] |
R. Peng and X.-Q. Zhao, A reaction–diffusion SIS epidemic model in a time–periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451.![]() ![]() ![]() |
[42] |
B. Perthame,
Parabolic Equations in Biology, Springer, Cham, 2015.
doi: 10.1007/978-3-319-19500-1.![]() ![]() ![]() |
[43] |
L. Rass and J. Radcliffe,
Spatial Deterministic Epidemics, Mathematical Surveys and Monographs, 102. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/102.![]() ![]() ![]() |
[44] |
R. Ross, An application of the theory of probabilities to the study of a priori pathometry: Ⅰ, Proc. R. Soc. Lond., 92 (1916), 204-230.
doi: 10.1098/rspa.1916.0007.![]() ![]() |
[45] |
S. Ruan, Spatial−temporal dynamics in nonlocal epidemiological models, Mathematics for Life Science and Medicine, Springer−Verlag, Berlin, (2007), 99–122.
![]() ![]() |
[46] |
S. Ruan and J. Wu, Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts, Chapman & Hall/CRC, Boca Raton, FL, (2009), 293–316.
![]() |
[47] |
H. L. Smith,
Monotone Dynamical System: An Introduction to the Theorey of Competitive and Cooperative Systems, Math. Surveys and Monogr. vol 41, American Mathematical Society, Providence, 1995.
![]() ![]() |
[48] |
R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291.
doi: 10.1016/j.camwa.2010.08.020.![]() ![]() ![]() |
[49] |
Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.
doi: 10.1016/S0362-546X(99)00138-8.![]() ![]() ![]() |
[50] |
H. R. Thieme, Mathematics in population biology, Princeton University Press, Princeton, NJ, 2003.
![]() ![]() |
[51] |
H. R. Thieme, Spectral bound and reproduction number for infinite–dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.![]() ![]() ![]() |
[52] |
H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011), 3772-3801.
doi: 10.1016/j.jde.2011.01.007.![]() ![]() ![]() |
[53] |
P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103.
doi: 10.1016/j.mbs.2006.09.017.![]() ![]() ![]() |
[54] |
B.-G. Wang, W.-T. Li and Z.-C. Wang, A reaction–diffusion SIS epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 66 (2015), 3085-3108.
doi: 10.1007/s00033-015-0585-z.![]() ![]() ![]() |
[55] |
B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dynam. Differential Equations, 25 (2013), 535-562.
doi: 10.1007/s10884-013-9304-7.![]() ![]() ![]() |
[56] |
L. Wang, Z. Liu and X. Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, Appl. Math. Comput., 284 (2016), 47-65.
doi: 10.1016/j.amc.2016.02.058.![]() ![]() ![]() |
[57] |
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8.![]() ![]() ![]() |
[58] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.![]() ![]() ![]() |
[59] |
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction–diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.![]() ![]() ![]() |
[60] |
W. Wang and X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.
doi: 10.1137/140981769.![]() ![]() ![]() |
[61] |
J. Wu, Spatial structure: Partial differential equations models, Mathematical Epidemiology,
Springer, Berlin, 1945 (2008), 191-203.
doi: 10.1007/978-3-540-78911-6_8.![]() ![]() ![]() |
[62] |
D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438.
doi: 10.1016/j.jmaa.2005.02.062.![]() ![]() ![]() |
[63] |
Z. Xu and X.-Q. Zhao, A vector–bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2615-2634.
doi: 10.3934/dcdsb.2012.17.2615.![]() ![]() ![]() |
[64] |
L. Zhang and J.-W. Sun, Global stability of a nonlocal epidemic model with delay, Taiwanese J. Math., 20 (2016), 577-587.
doi: 10.11650/tjm.20.2016.6291.![]() ![]() ![]() |
[65] |
L. Zhang and Z. -C. Wang, A time-periodic reaction-diffusion epidemic model with infection period, Z. Angew. Math. Phys. , 67 (2016), Art. 117, 14 pp.
doi: 10.1007/s00033-016-0711-6.![]() ![]() ![]() |
[66] |
L. Zhang, Z.-C. Wang and Y. Zhang, Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission, Comput. Math. Appl., 72 (2016), 202-215.
doi: 10.1016/j.camwa.2016.04.046.![]() ![]() |
[67] |
L. Zhang, Z.-C. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period, J. Differential Equations, 258 (2015), 3011-3036.
doi: 10.1016/j.jde.2014.12.032.![]() ![]() ![]() |
[68] |
Y. Zhang and X.-Q. Zhao, A reaction–diffusion Lyme disease model with seasonality, SIAM J. Appl. Math., 73 (2013), 2077-2099.
doi: 10.1137/120875454.![]() ![]() ![]() |
[69] |
X. -Q. Zhao,
Dynamical System in Population Biology, Spring-Verlag, New York. 2003.
doi: 10.1007/978-0-387-21761-1.![]() ![]() ![]() |
[70] |
X.-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808.
doi: 10.1007/s00285-011-0482-9.![]() ![]() ![]() |
[71] |
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyman. Differential Equations, 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.![]() ![]() ![]() |