
-
Previous Article
A multiscale model for heterogeneous tumor spheroid in vitro
- MBE Home
- This Issue
- Next Article
The potential impact of a prophylactic vaccine for Ebola in Sierra Leone
Rhodes College, Department of Mathematics & Computer Science, 2000 N. Parkway, Memphis, TN 38112, USA |
The 2014 outbreak of Ebola virus disease (EVD) in West Africa was multinational and of an unprecedented scale primarily affecting the countries of Guinea, Liberia, and Sierra Leone. One of the qualities that makes EVD of high public concern is its potential for extremely high mortality rates (up to 90%). A prophylactic vaccine for ebolavirus (rVSV-ZEBOV) has been developed, and clinical trials show near-perfect efficacy. We have developed an ordinary differential equations model that simulates an EVD epidemic and takes into account (1) transmission through contact with infectious EVD individuals and deceased EVD bodies, (2) the heterogeneity of the risk of becoming infected with EVD, and (3) the increased survival rate of infected EVD patients due to greater access to trained healthcare providers. Using fitted parameter values that closely simulate the dynamics of the 2014 outbreak in Sierra Leone, we utilize our model to predict the potential impact of a prophylactic vaccine for the ebolavirus using various vaccination strategies including ring vaccination. Our results show that an rVSV-ZEBOV vaccination coverage as low as 40% in the general population and 95% in healthcare workers will prevent another catastrophic outbreak like the 2014 outbreak from occurring.
References:
[1] |
M. Ajelli, S. Merler, L. Fumanelli, A. Pastore, Y. Piontti, N. E. Dean, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis BMC Medicine 14(2016), p130.
doi: 10.1186/s12916-016-0678-3. |
[2] |
C. L. Althaus, Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa
PLOS Currents Outbreaks (2014), Edition 1.
doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288. |
[3] |
E. J. Amundsen, H. Stigum, J. A. Rottingen and O. O. Aalen,
Definition and estimation of an actual reproduction number describing past infectious disease transmission: application to HIV epidemics among homosexual men in Denmark, Norway, and Sweden, Epidemiol Infect, 132 (2004), 1139-1149.
doi: 10.1017/S0950268804002997. |
[4] |
D. Bernoulli and S. Blower,
An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Reviews in Medical Virology, 14 (2004), 275-288.
doi: 10.1002/rmv.443. |
[5] |
S. M. Blower, E. N. Bodine and K. Grovit-Ferbas,
Predicting the potential public health impact of Disease-Modifying HIV Vaccines in South Africa: The problem of subtypes, Curr Drug Targets Infect Disord, 5 (2005), 179-192.
doi: 10.2174/1568005054201616. |
[6] |
S. M. Blower and H. Dowlatabadi,
Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev, 62 (1994), 229-243.
doi: 10.2307/1403510. |
[7] |
C. Browne, H. Gulbudak and G. Webb,
Modeling contact tracing in outbreaks with application to Ebola, J Theor Biol, 384 (2015), 33-49.
doi: 10.1016/j.jtbi.2015.08.004. |
[8] |
S. Calvignac-Spencer, J. M. Schulze, F. Zickmann and B. Y. Renard, Clock rooting further demonstrates that Guinea 2014 EBOV is a member of the Zaïre Lineage,
PLOS Currents Outbreaks (2014), Edition 1. |
[9] |
CDC,
2014 Ebola outbreak in West Africa -Case Counts,
Centers for Disease Control and Prevention (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html. |
[10] |
CDC,
Ebola survivors,
Centers for Disease Control (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/survivors.html. |
[11] |
CDC,
Ebola virus disease -signs and symptoms,
Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/symptoms/index.html. |
[12] |
CDC,
Outbreak chronology: Ebola virus disease,
Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html. |
[13] |
G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman,
The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J Theor Biol, 229 (2004), 119-126.
doi: 10.1016/j.jtbi.2004.03.006. |
[14] |
G. Chowell and M. Kiskowski,
Modeling ring-vaccination strategies to control ebola virus disease epidemics, Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, (2016), 71-87.
|
[15] |
A. Christie, G. J. Daview-Wayne, T. Cordier-Lasalle, D. J. Blackley, A. S. Laney, D. E. Williams, S. A. Shinde, M. Badio, T. Lo, S. E. Mate, J. T. Ladner, M. R. Wiley, J .R. Kugelman, G. Palacios, M. R. Holbrook, K. B. Janosko, E . de Wit, N. van Doremalen, V. J. Munster, J. Pettitt, R. J. Schoepp, L. Verhenne, I. Evlampidou, K. K. Kollie, S. B. Sieh, A. Gasasira, F. Bolay, F. N. Kateh, T. G. Nyenswah and K. M. De Cock,
Possible sexual transmission of Ebola virus-Liberia, 2015, MMWR Morb Mortal Wkly Rep, 64 (2015), 479-481.
|
[16] |
CIA,
The CIA World Factbook,
Central Intelligence Agency, United States (2015), https://www.cia.gov/library/publications/resources/the-world-factbook/. |
[17] |
A. Cintrón-Arias, C. Castillo-Chávez, L. M. A. Bettencourt, A. L. Lloyd and H. T. Banks,
The estimation of the effective reproduction number from disease outbreak data, Math Biosci Eng, 6 (2009), 261-282.
doi: 10.3934/mbe.2009.6.261. |
[18] |
G. F. Deen, B. Knust, N. Broutet, F. R. Sesay, P. Formenty, C. Ross, A. E. Thorson, T. A. Massaquoi, J. E. Marrinan, E. Ervin, A. Jambai, S. L. R. McDonald, K. Bernstein, A. H. Wurie, M. S. Dumbuya, N. Abad, B. Idriss, T. Wi, S. D. Bennett, T. Davies, F. K. Ebrahim, E. Meites, D. Naidoo, S. Smith, A. Banerjee, B. R. Erickson, A. Brault, K. N. Durski, J. Winter, T. Sealy, S. T. Nichol, M. Lamunu, U. Ströher, O. Morgan and F. Sahr,
Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors --Preliminary Report, N Engl J Med, (2015).
doi: 10.1056/NEJMoa1511410. |
[19] |
E. de Wit, H. Feldmann and V. J. Munsters, Tackling Ebola: New insights into prophylactic and therapeutic intervention strategies,
Genome Med 3(2011). |
[20] |
M. G. Dixon and I. J. Schafer,
Ebola Viral disease outbreak --West Africa, 2014, MMRW Morb Mortal Wkly Rep, 63 (2014), 548-551.
|
[21] |
T. S. Do and Y. S. Lee,
Modeling the spread of Ebola, Osong Public Health and Research Perspectives, 7 (2016), 43-48.
doi: 10.1016/j.phrp.2015.12.012. |
[22] |
S. F. Dowell, R. Mukunu, T. G. Ksiazek, A. S. Khan, P. E. Rollin and C. J. Peters,
Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J Infect Dis, 179 (1999), S87-S91.
doi: 10.1086/514284. |
[23] |
P. van den Driessche and J. Watmough,
Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[24] |
M. Eichner and K. Dietz,
Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Amer Journal of Epidem, 158 (2003), 110-117.
doi: 10.1093/aje/kwg103. |
[25] |
M. Eichner, S. F. Dowell and N. Firese,
Incubation period of ebola hemorrhagic virus subtype zaire, Osong Public Heath Res Perspect, 2 (2011), 3-7.
doi: 10.1016/j.phrp.2011.04.001. |
[26] |
D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model PLOS Currents Outbreaks (2014), Edition 1.
doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571. |
[27] |
T. C. Germann, K. Kadau, I. M. Longini Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States
PNAS (2006).
doi: 10.1073/pnas.0601266103. |
[28] |
R. F. Grais, M. J. Ferrari, C. Dubray, O. N. Bjornstad, G. T. Grenfell, A. Djibo, F. Fermon and P. J. Guerin,
Estimating transmission intensity for a measles epidemic in Niamey, Niger: Lessons for intervention, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (2006), 867-873.
doi: 10.1016/j.trstmh.2005.10.014. |
[29] |
J. M. Heffernan, R. J. Smith and L. M. Wahl,
Perspectives on the basic reproductive ratio, J Roy Soc Interface, 2 (2005), 281-293.
|
[30] |
J. M. Heffernan and M. J. Keeling,
Implications of vaccination and waning immunity, Proc R Soc B, 276 (2009), 2071-2080.
doi: 10.1098/rspb.2009.0057. |
[31] |
A. M. Henao-Restrepo, A. Camacho, I. M. Longini, C. H. Watson, W. J. Edmunds, M. Egger, M. W. Carroll, N. E. Dean, I. Diatta, M. Doumbia, B. Draguez, S. Duraffour, G. Enwere, R. Grais, S. Gunther, P.-S. Gsell, S. Hossmann, S. V. Watle, M. K. Kondé, S. Kéïta, S. Kone, E. Kuisma, M. M. Levine, S. Mandal, T. Mauget, G. Norheim, X. Riveros, A. Soumah, S. Trelle, A. S. Vicari, J.-A. Rottingen and M.-P. Kieny,
Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017), 505-518.
doi: 10.1016/S0140-6736(16)32621-6. |
[32] |
A. M. Henao-Restrepo, I. M. Longini, M. Egger, N. E. Dean, W. J. Edmunds, A. Camacho, M. W. Carroll, M. Doumbia, B. Draguez, S. Duraffour, G. Enwere, R. Grais, S. Gunther, S. Hossmann, M. K. Kondé, S. Kone, E. Kuisma, M. M. Levine, S. Mandal, G. Norheim, X. Riveros, A. Soumah, S. Trelle, A. S. Vicari, C. H. Watson, S. Kéïta, M. P. Kieny and J.-A. Rottingen,
Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (2015), 857-866.
doi: 10.1016/S0140-6736(15)61117-5. |
[33] |
B. S. Hewlett and R. P. Amola,
Cultural contexts of Ebola in Northern Uganda, Emerg Infect Dis, 9 (2003), 1242-1248.
doi: 10.3201/eid0910.020493. |
[34] |
M. Ibrahim, L. Alexander, C. Shy and S. Farr,
UNC Department of Epidemiology: Incidence vs. Prevalence, Epidemiologic Research & Information Center Notebook, (1999), 1-5.
|
[35] |
A. Kahn, M. Naveed, M. Dur-e-Ahmad and M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone
Infect Dis Poverty 4(2015), p13.
doi: 10.1186/s40249-015-0043-3. |
[36] |
M. J. Keeling and P. Rohani,
Modeling Infectious Diseases in Humans and Animals
Princeton University Press, 2008. |
[37] |
M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell,
Modelling vaccination strategies against foot-and-mouth disease, Nature, 421 (2003), 136-142.
doi: 10.1038/nature01343. |
[38] |
Y. Kinfu, M. R. Dal Poz, H. Mercer and D. B. Evans,
The health worker shortage in Africa: Are enough physicians and nurses being trained?, Bull World Health Organ, 87 (2009), 225-230.
doi: 10.2471/BLT.08.051599. |
[39] |
N. M. Kudoyarova-Zubavichene, N. N. Sergeyev, A. A. Chepurnov and S. V. Netesov,
Preparation and Use of Hyperimmune Serum for Prophylaxis and Therapy of Ebola Virus Infections, J Infect Dis, 179 (1999), 218-223.
doi: 10.1086/514294. |
[40] |
J. Legrand, R. F. Brais, P. Y. Boelle, A. J. Valleron and A. Flahault,
Understanding the dynamics of Ebola epidemics, Epidemiol Infect, 135 (2007), 610-621.
|
[41] |
E. M. Leroy, P. Rouquet, P. Formenty, S. Souquiere, A. Kilbourne, J.-M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S. R. Zaki and P. E. Rollin,
Multiple Ebola virus transmission events and rapid decline of Central African wildlife, Science, 303 (2004), 387-390.
doi: 10.1126/science.1092528. |
[42] |
Y. Liu, J. Wang, S. Liu, J. Du, L. Wang, W. Gu, Y. Xu, S. Zuo, E. Xu and Z. An,
Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014, Vaccine, 35 (2017), 1281-1286.
doi: 10.1016/j.vaccine.2017.01.034. |
[43] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner,
A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011. |
[44] |
M. D. McKay, R. J. Beckman and W. J. Conover,
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239-245.
doi: 10.2307/1268522. |
[45] |
M. I. Meltzer, C. Y. Atkins, S. Santibanez, B. Knust, B. W. Petersen, E. D. Ervin, S. T. Nichol, I. K. Damon and M. L. Washington,
Estimating the future number of cases in the Ebola Epidemic --Liberia and Sierra Leone, 2014-2015, MMWR Morb Mortal Wkly Rep, (2014).
|
[46] |
S. Merler, M. Ajelli, L. Fumanelli, S. Parlamento, A. Pastore y Piontti, N. E. Dean, G. Putoto, D. Carraro, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Containing Ebola at the source with ring vaccination PLOS Neglected Tropical Diseases 10(2016), e0005093.
doi: 10.1371/journal.pntd.0005093. |
[47] |
J. Müller, B. Schönfisch and M. Kirkilionis,
Ring vaccination, Journal of Mathematical Biology, 41 (2000), 143-171.
doi: 10.1007/s002850070003. |
[48] |
Medicins Sans Frontieres/Doctors Without Borders,
Ebola (2015),
http://www.doctorswithoutborders.org/our-work/medical-issues/ebola. |
[49] |
H. Nishiura,
Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data, Int J Environ Res Public Health, 7 (2010), 291-302.
doi: 10.3390/ijerph7010291. |
[50] |
A. Pandey, K. E. Atkins, J. Medlock, N. Wenzel, J. P. Townsend, J. E. Childs, T. G. Nyenswah, M. L. Ndeffo-Mbah and A. P. Galvani,
Strategies for containing Ebola in West Africa, Science, 346 (2014), 991-995.
|
[51] |
J. Prescott, T. Bushmaker, R. Fischer, K. Miazgowicz, S. Judson and V. J. Munster,
Postmortem stability of Ebola virus, Emerg Infect Dis, 21 (2015), 856-859.
doi: 10.3201/eid2105.150041. |
[52] |
C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in sierra leone and liberia
PLOS Currents Outbreaks (2014), Edition 2.
doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c. |
[53] |
D. Salem and R. Smith?,
A mathematical model of ebola virus disease: Using sensitivity analysis to determine effective intervention targets, Proceedings of SummerSim-SCSC, (2016), 16-23.
|
[54] |
E. E. Salpeter and S. R. Salpeter,
Mathematical mode for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function, Am J Epidemiol, 142 (1998), 398-406.
|
[55] |
R. Smith?,
Modelling Disease Ecology with Mathematics
American Institute of Mathematical Sciences, 2008. |
[56] |
L. R. Stanberry,
Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines, Herpes, (2004), 161A-169A.
|
[57] |
United Nations,
Making A Difference the Global Ebola Response: Outlook 2015
United Nations, (2015), http://ebolaresponse.un.org/outlook-2015. |
[58] |
United Nations Global Ebola Response,
UN Mission for Ebola Emergency Response (UNMEER)
United Nations, (2015), http://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer. |
[59] |
G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing PLoS Currents Outbreaks (2015), Edition 1.
doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a. |
[60] |
G. Webb and C. Browne,
A model of the Ebola epidemics in West Africa incorporating age of infection, J Biol Dyn, 10 (2016), 18-30.
doi: 10.1080/17513758.2015.1090632. |
[61] |
WHO, WHO coordinating vaccination of contacts to contain Ebola flare-up in Guinea,
World Health Organization, (2016), http://www.who.int/features/2016/ebola-contacts-vaccination/en/. |
[62] |
WHO, One year into the Ebola epidemic: A deadly tenacious and unforgiving virus,
World Health Organization, (2015), http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/. |
[63] |
WHO, Ebola outbreak 2014 -present: How the outbreak and WHO's response unfolded,
World Health Organization, (2016), http://who.int/csr/disease/ebola/response/phases/en/. |
[64] |
WHO, Ebola virus disease,
World Health Organization, (2015), http://www.who.int/mediacentre/factsheets/fs103/en/. |
[65] |
WHO,
WHO: Ebola Response Roadmap
World Health Organization, (2014), http://www.who.int/csr/resources/publications/ebola/response-roadmap/en/. |
[66] |
WHO,
Ebola Virus Disease Outbreak Response Plan in West Africa
World Health Organization, (2014), http://www.who.int/mediacentre/factsheets/fs103/en/. |
[67] |
WHO Ebola Response Team,
Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N Engl J Med, 371 (2014), 1481-1495.
|
show all references
References:
[1] |
M. Ajelli, S. Merler, L. Fumanelli, A. Pastore, Y. Piontti, N. E. Dean, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis BMC Medicine 14(2016), p130.
doi: 10.1186/s12916-016-0678-3. |
[2] |
C. L. Althaus, Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa
PLOS Currents Outbreaks (2014), Edition 1.
doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288. |
[3] |
E. J. Amundsen, H. Stigum, J. A. Rottingen and O. O. Aalen,
Definition and estimation of an actual reproduction number describing past infectious disease transmission: application to HIV epidemics among homosexual men in Denmark, Norway, and Sweden, Epidemiol Infect, 132 (2004), 1139-1149.
doi: 10.1017/S0950268804002997. |
[4] |
D. Bernoulli and S. Blower,
An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Reviews in Medical Virology, 14 (2004), 275-288.
doi: 10.1002/rmv.443. |
[5] |
S. M. Blower, E. N. Bodine and K. Grovit-Ferbas,
Predicting the potential public health impact of Disease-Modifying HIV Vaccines in South Africa: The problem of subtypes, Curr Drug Targets Infect Disord, 5 (2005), 179-192.
doi: 10.2174/1568005054201616. |
[6] |
S. M. Blower and H. Dowlatabadi,
Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev, 62 (1994), 229-243.
doi: 10.2307/1403510. |
[7] |
C. Browne, H. Gulbudak and G. Webb,
Modeling contact tracing in outbreaks with application to Ebola, J Theor Biol, 384 (2015), 33-49.
doi: 10.1016/j.jtbi.2015.08.004. |
[8] |
S. Calvignac-Spencer, J. M. Schulze, F. Zickmann and B. Y. Renard, Clock rooting further demonstrates that Guinea 2014 EBOV is a member of the Zaïre Lineage,
PLOS Currents Outbreaks (2014), Edition 1. |
[9] |
CDC,
2014 Ebola outbreak in West Africa -Case Counts,
Centers for Disease Control and Prevention (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html. |
[10] |
CDC,
Ebola survivors,
Centers for Disease Control (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/survivors.html. |
[11] |
CDC,
Ebola virus disease -signs and symptoms,
Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/symptoms/index.html. |
[12] |
CDC,
Outbreak chronology: Ebola virus disease,
Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html. |
[13] |
G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman,
The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J Theor Biol, 229 (2004), 119-126.
doi: 10.1016/j.jtbi.2004.03.006. |
[14] |
G. Chowell and M. Kiskowski,
Modeling ring-vaccination strategies to control ebola virus disease epidemics, Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, (2016), 71-87.
|
[15] |
A. Christie, G. J. Daview-Wayne, T. Cordier-Lasalle, D. J. Blackley, A. S. Laney, D. E. Williams, S. A. Shinde, M. Badio, T. Lo, S. E. Mate, J. T. Ladner, M. R. Wiley, J .R. Kugelman, G. Palacios, M. R. Holbrook, K. B. Janosko, E . de Wit, N. van Doremalen, V. J. Munster, J. Pettitt, R. J. Schoepp, L. Verhenne, I. Evlampidou, K. K. Kollie, S. B. Sieh, A. Gasasira, F. Bolay, F. N. Kateh, T. G. Nyenswah and K. M. De Cock,
Possible sexual transmission of Ebola virus-Liberia, 2015, MMWR Morb Mortal Wkly Rep, 64 (2015), 479-481.
|
[16] |
CIA,
The CIA World Factbook,
Central Intelligence Agency, United States (2015), https://www.cia.gov/library/publications/resources/the-world-factbook/. |
[17] |
A. Cintrón-Arias, C. Castillo-Chávez, L. M. A. Bettencourt, A. L. Lloyd and H. T. Banks,
The estimation of the effective reproduction number from disease outbreak data, Math Biosci Eng, 6 (2009), 261-282.
doi: 10.3934/mbe.2009.6.261. |
[18] |
G. F. Deen, B. Knust, N. Broutet, F. R. Sesay, P. Formenty, C. Ross, A. E. Thorson, T. A. Massaquoi, J. E. Marrinan, E. Ervin, A. Jambai, S. L. R. McDonald, K. Bernstein, A. H. Wurie, M. S. Dumbuya, N. Abad, B. Idriss, T. Wi, S. D. Bennett, T. Davies, F. K. Ebrahim, E. Meites, D. Naidoo, S. Smith, A. Banerjee, B. R. Erickson, A. Brault, K. N. Durski, J. Winter, T. Sealy, S. T. Nichol, M. Lamunu, U. Ströher, O. Morgan and F. Sahr,
Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors --Preliminary Report, N Engl J Med, (2015).
doi: 10.1056/NEJMoa1511410. |
[19] |
E. de Wit, H. Feldmann and V. J. Munsters, Tackling Ebola: New insights into prophylactic and therapeutic intervention strategies,
Genome Med 3(2011). |
[20] |
M. G. Dixon and I. J. Schafer,
Ebola Viral disease outbreak --West Africa, 2014, MMRW Morb Mortal Wkly Rep, 63 (2014), 548-551.
|
[21] |
T. S. Do and Y. S. Lee,
Modeling the spread of Ebola, Osong Public Health and Research Perspectives, 7 (2016), 43-48.
doi: 10.1016/j.phrp.2015.12.012. |
[22] |
S. F. Dowell, R. Mukunu, T. G. Ksiazek, A. S. Khan, P. E. Rollin and C. J. Peters,
Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J Infect Dis, 179 (1999), S87-S91.
doi: 10.1086/514284. |
[23] |
P. van den Driessche and J. Watmough,
Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[24] |
M. Eichner and K. Dietz,
Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Amer Journal of Epidem, 158 (2003), 110-117.
doi: 10.1093/aje/kwg103. |
[25] |
M. Eichner, S. F. Dowell and N. Firese,
Incubation period of ebola hemorrhagic virus subtype zaire, Osong Public Heath Res Perspect, 2 (2011), 3-7.
doi: 10.1016/j.phrp.2011.04.001. |
[26] |
D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model PLOS Currents Outbreaks (2014), Edition 1.
doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571. |
[27] |
T. C. Germann, K. Kadau, I. M. Longini Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States
PNAS (2006).
doi: 10.1073/pnas.0601266103. |
[28] |
R. F. Grais, M. J. Ferrari, C. Dubray, O. N. Bjornstad, G. T. Grenfell, A. Djibo, F. Fermon and P. J. Guerin,
Estimating transmission intensity for a measles epidemic in Niamey, Niger: Lessons for intervention, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (2006), 867-873.
doi: 10.1016/j.trstmh.2005.10.014. |
[29] |
J. M. Heffernan, R. J. Smith and L. M. Wahl,
Perspectives on the basic reproductive ratio, J Roy Soc Interface, 2 (2005), 281-293.
|
[30] |
J. M. Heffernan and M. J. Keeling,
Implications of vaccination and waning immunity, Proc R Soc B, 276 (2009), 2071-2080.
doi: 10.1098/rspb.2009.0057. |
[31] |
A. M. Henao-Restrepo, A. Camacho, I. M. Longini, C. H. Watson, W. J. Edmunds, M. Egger, M. W. Carroll, N. E. Dean, I. Diatta, M. Doumbia, B. Draguez, S. Duraffour, G. Enwere, R. Grais, S. Gunther, P.-S. Gsell, S. Hossmann, S. V. Watle, M. K. Kondé, S. Kéïta, S. Kone, E. Kuisma, M. M. Levine, S. Mandal, T. Mauget, G. Norheim, X. Riveros, A. Soumah, S. Trelle, A. S. Vicari, J.-A. Rottingen and M.-P. Kieny,
Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017), 505-518.
doi: 10.1016/S0140-6736(16)32621-6. |
[32] |
A. M. Henao-Restrepo, I. M. Longini, M. Egger, N. E. Dean, W. J. Edmunds, A. Camacho, M. W. Carroll, M. Doumbia, B. Draguez, S. Duraffour, G. Enwere, R. Grais, S. Gunther, S. Hossmann, M. K. Kondé, S. Kone, E. Kuisma, M. M. Levine, S. Mandal, G. Norheim, X. Riveros, A. Soumah, S. Trelle, A. S. Vicari, C. H. Watson, S. Kéïta, M. P. Kieny and J.-A. Rottingen,
Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (2015), 857-866.
doi: 10.1016/S0140-6736(15)61117-5. |
[33] |
B. S. Hewlett and R. P. Amola,
Cultural contexts of Ebola in Northern Uganda, Emerg Infect Dis, 9 (2003), 1242-1248.
doi: 10.3201/eid0910.020493. |
[34] |
M. Ibrahim, L. Alexander, C. Shy and S. Farr,
UNC Department of Epidemiology: Incidence vs. Prevalence, Epidemiologic Research & Information Center Notebook, (1999), 1-5.
|
[35] |
A. Kahn, M. Naveed, M. Dur-e-Ahmad and M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone
Infect Dis Poverty 4(2015), p13.
doi: 10.1186/s40249-015-0043-3. |
[36] |
M. J. Keeling and P. Rohani,
Modeling Infectious Diseases in Humans and Animals
Princeton University Press, 2008. |
[37] |
M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell,
Modelling vaccination strategies against foot-and-mouth disease, Nature, 421 (2003), 136-142.
doi: 10.1038/nature01343. |
[38] |
Y. Kinfu, M. R. Dal Poz, H. Mercer and D. B. Evans,
The health worker shortage in Africa: Are enough physicians and nurses being trained?, Bull World Health Organ, 87 (2009), 225-230.
doi: 10.2471/BLT.08.051599. |
[39] |
N. M. Kudoyarova-Zubavichene, N. N. Sergeyev, A. A. Chepurnov and S. V. Netesov,
Preparation and Use of Hyperimmune Serum for Prophylaxis and Therapy of Ebola Virus Infections, J Infect Dis, 179 (1999), 218-223.
doi: 10.1086/514294. |
[40] |
J. Legrand, R. F. Brais, P. Y. Boelle, A. J. Valleron and A. Flahault,
Understanding the dynamics of Ebola epidemics, Epidemiol Infect, 135 (2007), 610-621.
|
[41] |
E. M. Leroy, P. Rouquet, P. Formenty, S. Souquiere, A. Kilbourne, J.-M. Froment, M. Bermejo, S. Smit, W. Karesh, R. Swanepoel, S. R. Zaki and P. E. Rollin,
Multiple Ebola virus transmission events and rapid decline of Central African wildlife, Science, 303 (2004), 387-390.
doi: 10.1126/science.1092528. |
[42] |
Y. Liu, J. Wang, S. Liu, J. Du, L. Wang, W. Gu, Y. Xu, S. Zuo, E. Xu and Z. An,
Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014, Vaccine, 35 (2017), 1281-1286.
doi: 10.1016/j.vaccine.2017.01.034. |
[43] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner,
A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011. |
[44] |
M. D. McKay, R. J. Beckman and W. J. Conover,
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239-245.
doi: 10.2307/1268522. |
[45] |
M. I. Meltzer, C. Y. Atkins, S. Santibanez, B. Knust, B. W. Petersen, E. D. Ervin, S. T. Nichol, I. K. Damon and M. L. Washington,
Estimating the future number of cases in the Ebola Epidemic --Liberia and Sierra Leone, 2014-2015, MMWR Morb Mortal Wkly Rep, (2014).
|
[46] |
S. Merler, M. Ajelli, L. Fumanelli, S. Parlamento, A. Pastore y Piontti, N. E. Dean, G. Putoto, D. Carraro, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Containing Ebola at the source with ring vaccination PLOS Neglected Tropical Diseases 10(2016), e0005093.
doi: 10.1371/journal.pntd.0005093. |
[47] |
J. Müller, B. Schönfisch and M. Kirkilionis,
Ring vaccination, Journal of Mathematical Biology, 41 (2000), 143-171.
doi: 10.1007/s002850070003. |
[48] |
Medicins Sans Frontieres/Doctors Without Borders,
Ebola (2015),
http://www.doctorswithoutborders.org/our-work/medical-issues/ebola. |
[49] |
H. Nishiura,
Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data, Int J Environ Res Public Health, 7 (2010), 291-302.
doi: 10.3390/ijerph7010291. |
[50] |
A. Pandey, K. E. Atkins, J. Medlock, N. Wenzel, J. P. Townsend, J. E. Childs, T. G. Nyenswah, M. L. Ndeffo-Mbah and A. P. Galvani,
Strategies for containing Ebola in West Africa, Science, 346 (2014), 991-995.
|
[51] |
J. Prescott, T. Bushmaker, R. Fischer, K. Miazgowicz, S. Judson and V. J. Munster,
Postmortem stability of Ebola virus, Emerg Infect Dis, 21 (2015), 856-859.
doi: 10.3201/eid2105.150041. |
[52] |
C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in sierra leone and liberia
PLOS Currents Outbreaks (2014), Edition 2.
doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c. |
[53] |
D. Salem and R. Smith?,
A mathematical model of ebola virus disease: Using sensitivity analysis to determine effective intervention targets, Proceedings of SummerSim-SCSC, (2016), 16-23.
|
[54] |
E. E. Salpeter and S. R. Salpeter,
Mathematical mode for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function, Am J Epidemiol, 142 (1998), 398-406.
|
[55] |
R. Smith?,
Modelling Disease Ecology with Mathematics
American Institute of Mathematical Sciences, 2008. |
[56] |
L. R. Stanberry,
Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines, Herpes, (2004), 161A-169A.
|
[57] |
United Nations,
Making A Difference the Global Ebola Response: Outlook 2015
United Nations, (2015), http://ebolaresponse.un.org/outlook-2015. |
[58] |
United Nations Global Ebola Response,
UN Mission for Ebola Emergency Response (UNMEER)
United Nations, (2015), http://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer. |
[59] |
G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing PLoS Currents Outbreaks (2015), Edition 1.
doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a. |
[60] |
G. Webb and C. Browne,
A model of the Ebola epidemics in West Africa incorporating age of infection, J Biol Dyn, 10 (2016), 18-30.
doi: 10.1080/17513758.2015.1090632. |
[61] |
WHO, WHO coordinating vaccination of contacts to contain Ebola flare-up in Guinea,
World Health Organization, (2016), http://www.who.int/features/2016/ebola-contacts-vaccination/en/. |
[62] |
WHO, One year into the Ebola epidemic: A deadly tenacious and unforgiving virus,
World Health Organization, (2015), http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/. |
[63] |
WHO, Ebola outbreak 2014 -present: How the outbreak and WHO's response unfolded,
World Health Organization, (2016), http://who.int/csr/disease/ebola/response/phases/en/. |
[64] |
WHO, Ebola virus disease,
World Health Organization, (2015), http://www.who.int/mediacentre/factsheets/fs103/en/. |
[65] |
WHO,
WHO: Ebola Response Roadmap
World Health Organization, (2014), http://www.who.int/csr/resources/publications/ebola/response-roadmap/en/. |
[66] |
WHO,
Ebola Virus Disease Outbreak Response Plan in West Africa
World Health Organization, (2014), http://www.who.int/mediacentre/factsheets/fs103/en/. |
[67] |
WHO Ebola Response Team,
Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N Engl J Med, 371 (2014), 1481-1495.
|




Parameter | Units | Value | Description | Source | |
Fitted Parameters | |
See Table 3 | transmission rate from infectious individuals to high risk susceptible individuals | ||
|
See Table 3 | transmission rate from infectious individuals to low risk susceptible individuals | |||
|
See Table 3 | transmission rate from infectious individuals to susceptible healthcare workers | |||
See Table 3 | transmission rate from deceased individuals to high risk susceptible individuals | ||||
See Table 3 | transmission rate from deceased individuals to low risk susceptible individuals | ||||
See Table 3 | transmission rate from deceased individuals to susceptible healthcare workers | ||||
See Table 3 | transmission rate from recovering, still infectious individuals to low risk individuals | ||||
-- | See Table 3 | proportion of symptomatic individuals who go to hospitals | |||
-- | See Table 3 | scaling constant where |
|||
Vax | -- | |
proportion of individuals in whom the vaccine is effective | [31] | |
-- | See Section 5 | proportion of low susceptible population ( |
|||
-- | See Section 5 | proportion of high susceptible population ( |
|||
-- | See Section 5 | proportion of healthcare workers ( |
|||
See section 3 | migration rate of healthcare workers into the population | ||||
|
natural death rate per day per 1,000 individuals | [16] | |||
|
natural birth rate per day per 1,000 individuals | [16] | |||
|
rate at which individuals become symptomatic and infectious | [45] | |||
|
infectious period of individuals who are not in hospitals | [50] | |||
|
infectious period of individuals who are in hospitals | ||||
-- | |
proportion of individuals who die from Ebola | [12] | ||
|
number of healthcare workers in the population prior to outbreak | [16] | |||
|
burial rate of deceased individuals who were not in hospitals | ||||
|
burial rate of deceased individuals who were in hospitals | [50] | |||
|
rate at which recovering and still infectious individuals become non-infectious | [18,15] | |||
|
rate at which individuals move from low risk to high risk susceptible populations | ||||
rate at which individuals move from high risk to low risk susceptible populations |
Parameter | Units | Value | Description | Source | |
Fitted Parameters | |
See Table 3 | transmission rate from infectious individuals to high risk susceptible individuals | ||
|
See Table 3 | transmission rate from infectious individuals to low risk susceptible individuals | |||
|
See Table 3 | transmission rate from infectious individuals to susceptible healthcare workers | |||
See Table 3 | transmission rate from deceased individuals to high risk susceptible individuals | ||||
See Table 3 | transmission rate from deceased individuals to low risk susceptible individuals | ||||
See Table 3 | transmission rate from deceased individuals to susceptible healthcare workers | ||||
See Table 3 | transmission rate from recovering, still infectious individuals to low risk individuals | ||||
-- | See Table 3 | proportion of symptomatic individuals who go to hospitals | |||
-- | See Table 3 | scaling constant where |
|||
Vax | -- | |
proportion of individuals in whom the vaccine is effective | [31] | |
-- | See Section 5 | proportion of low susceptible population ( |
|||
-- | See Section 5 | proportion of high susceptible population ( |
|||
-- | See Section 5 | proportion of healthcare workers ( |
|||
See section 3 | migration rate of healthcare workers into the population | ||||
|
natural death rate per day per 1,000 individuals | [16] | |||
|
natural birth rate per day per 1,000 individuals | [16] | |||
|
rate at which individuals become symptomatic and infectious | [45] | |||
|
infectious period of individuals who are not in hospitals | [50] | |||
|
infectious period of individuals who are in hospitals | ||||
-- | |
proportion of individuals who die from Ebola | [12] | ||
|
number of healthcare workers in the population prior to outbreak | [16] | |||
|
burial rate of deceased individuals who were not in hospitals | ||||
|
burial rate of deceased individuals who were in hospitals | [50] | |||
|
rate at which recovering and still infectious individuals become non-infectious | [18,15] | |||
|
rate at which individuals move from low risk to high risk susceptible populations | ||||
rate at which individuals move from high risk to low risk susceptible populations |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.015 | 0.030 | 0.060 | 0.013 | 0.013 |
|
40 | 20 | 10 | 50 | 45 |
|
|
|
|
|
|
|
0.015 | 0.030 | 0.060 | 0.013 | 0.013 |
|
40 | 20 | 10 | 50 | 45 |
Response period | |
|
3.31 |
|
1.88 |
|
0.90 |
|
0.27 |
|
0.16 |
Response period | |
|
3.31 |
|
1.88 |
|
0.90 |
|
0.27 |
|
0.16 |
Cumulative Infections | Cumulative Deaths | |||||
at tf | Prevented | at tf | Prevented | |||
Baseline |
14436 | 0 | 4416 | 0 | ||
Start vax at | 8863 | 5573 | 2738 | 1678 | ||
12583 | 1853 | 3837 | 579 | |||
13225 | 1211 | 4050 | 366 | |||
14325 | 111 | 4392 | 24 | |||
Start vax at | 5138 | 9298 | 1656 | 2760 | ||
11075 | 3361 | 3343 | 1073 | |||
12168 | 2268 | 3708 | 708 | |||
14173 | 263 | 4357 | 59 | |||
Start vax at | 13999 | 437 | 4283 | 133 | ||
14285 | 151 | 4369 | 47 | |||
14351 | 85 | 4391 | 25 | |||
14429 | 7 | 4415 | 1 | |||
Start vax at | 8821 | 5615 | 2726 | 1690 | ||
12553 | 1883 | 3827 | 589 | |||
13211 | 1225 | 4046 | 370 | |||
14323 | 113 | 4391 | 25 | |||
Cumulative Infections | Cumulative Deaths | |||||
at tf | Prevented | at tf | Prevented | |||
Baseline |
14436 | 0 | 4416 | 0 | ||
Start vax at | 8863 | 5573 | 2738 | 1678 | ||
12583 | 1853 | 3837 | 579 | |||
13225 | 1211 | 4050 | 366 | |||
14325 | 111 | 4392 | 24 | |||
Start vax at | 5138 | 9298 | 1656 | 2760 | ||
11075 | 3361 | 3343 | 1073 | |||
12168 | 2268 | 3708 | 708 | |||
14173 | 263 | 4357 | 59 | |||
Start vax at | 13999 | 437 | 4283 | 133 | ||
14285 | 151 | 4369 | 47 | |||
14351 | 85 | 4391 | 25 | |||
14429 | 7 | 4415 | 1 | |||
Start vax at | 8821 | 5615 | 2726 | 1690 | ||
12553 | 1883 | 3827 | 589 | |||
13211 | 1225 | 4046 | 370 | |||
14323 | 113 | 4391 | 25 | |||
Vaccination strategy for |
||||||||
CI | CI | CI | CI | |||||
0 | 4156370 | 495 | 3743965 | 516 | 650846 | 492 | 2643460 | 492 |
0.10 | 3064971 | 648 | 2506362 | 694 | 1853742 | 644 | 1845334 | 644 |
0.20 | 1866043 | 974 | 1026659 | 1138 | 1040091 | 987 | 1030788 | 988 |
0.29 | 764174 | 1990 | 37 | 103 | 188898 | 2267 | 188898 | 2267 |
0.30 | 646329 | 2270 | 33 | 0 | 82717 | 2546 | 82717 | 2546 |
0.31 | 529673 | 2657 | 29 | 0 | 19911 | 2502 | 19911 | 2502 |
0.32 | 414210 | 3213 | 25 | 0 | 3866 | 2091 | 3866 | 2091 |
0.33 | 300060 | 4090 | 23 | 0 | 954 | 1570 | 954 | 1570 |
0.34 | 171811 | 5697 | 20 | 0 | 325 | 1023 | 325 | 1023 |
0.35 | 13195 | 7300 | 18 | 0 | 147 | 0 | 147 | 0 |
0.36 | 431 | 0 | 16 | 0 | 81 | 0 | 81 | 0 |
0.40 | 26 | 0 | 20 | 0 | 23 | 0 | 23 | 0 |
0.50 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 |
0.60 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 |
0.70 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
0.80 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
0.90 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
Vaccination strategy for |
||||||||
CI | CI | CI | CI | |||||
0 | 4156370 | 495 | 3743965 | 516 | 650846 | 492 | 2643460 | 492 |
0.10 | 3064971 | 648 | 2506362 | 694 | 1853742 | 644 | 1845334 | 644 |
0.20 | 1866043 | 974 | 1026659 | 1138 | 1040091 | 987 | 1030788 | 988 |
0.29 | 764174 | 1990 | 37 | 103 | 188898 | 2267 | 188898 | 2267 |
0.30 | 646329 | 2270 | 33 | 0 | 82717 | 2546 | 82717 | 2546 |
0.31 | 529673 | 2657 | 29 | 0 | 19911 | 2502 | 19911 | 2502 |
0.32 | 414210 | 3213 | 25 | 0 | 3866 | 2091 | 3866 | 2091 |
0.33 | 300060 | 4090 | 23 | 0 | 954 | 1570 | 954 | 1570 |
0.34 | 171811 | 5697 | 20 | 0 | 325 | 1023 | 325 | 1023 |
0.35 | 13195 | 7300 | 18 | 0 | 147 | 0 | 147 | 0 |
0.36 | 431 | 0 | 16 | 0 | 81 | 0 | 81 | 0 |
0.40 | 26 | 0 | 20 | 0 | 23 | 0 | 23 | 0 |
0.50 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 |
0.60 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 |
0.70 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
0.80 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
0.90 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
[1] |
Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479 |
[2] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[3] |
Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1 |
[4] |
Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1001-1021. doi: 10.3934/dcdsb.2017050 |
[5] |
Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633 |
[6] |
Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219 |
[7] |
Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 |
[8] |
Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451 |
[9] |
Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 |
[10] |
Ruben A. Proano, Sheldon H. Jacobson, Janet A. Jokela. A multi-attribute approach for setting pediatric vaccine stockpile levels. Journal of Industrial and Management Optimization, 2010, 6 (4) : 709-727. doi: 10.3934/jimo.2010.6.709 |
[11] |
Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485 |
[12] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[13] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[14] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[15] |
Tufail Malik, Jody Reimer, Abba Gumel, Elamin H. Elbasha, Salaheddin Mahmud. The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1173-1205. doi: 10.3934/mbe.2013.10.1173 |
[16] |
Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539-552. doi: 10.3934/mbe.2012.9.539 |
[17] |
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165 |
[18] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[19] |
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 |
[20] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]