
-
Previous Article
A model of regulatory dynamics with threshold-type state-dependent delay
- MBE Home
- This Issue
-
Next Article
Closed-loop control of tumor growth by means of anti-angiogenic administration
Continuous and pulsed epidemiological models for onchocerciasis with implications for eradication strategy
1. | Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA |
2. | Mathematics Department, Seattle University, 901 12th Ave, Seattle, WA 98122-1090, USA |
3. | Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705, USA |
4. | Department of Mathematics, New York City College of Technology -CUNY, Brooklyn, NY 11201, USA |
Onchocerciasis is an endemic disease in parts of sub-Saharan Africa. Complex mathematical models are being used to assess the likely efficacy of efforts to eradicate the disease; however, their predictions have not always been borne out in practice. In this paper, we represent the immunological aspects of the disease with a single empirical parameter in order to reduce the model complexity. Asymptotic approximation allows us to reduce the vector-borne epidemiological model to a model of an infectious disease with nonlinear incidence. We then consider two versions, one with continuous treatment and a more realistic one where treatment occurs only at intervals. Thorough mathematical analysis of these models yields equilibrium solutions for the continuous case, periodic solutions for the pulsed case, and conditions for the existence of endemic disease equilibria in both cases, thereby leading to simple model criteria for eradication. The analytical results and numerical experiments show that the continuous treatment version is an excellent approximation for the pulsed version and that the current onchocerciasis eradication strategy is inadequate for regions where the incidence is highest and unacceptably slow even when the long-term behavior is the disease-free state.
References:
[1] |
African programme for onchocerciasis control: Progress report, 2014-2015, Relevé
Épidémiologique Hebdomadaire / Section D'hygiène Du Secrétariat De La Société Des Nations = Weekly Epidemiological Record / Health Section Of The Secretariat Of The League
Of Nations, 90 (2015), 661–674. URL: http://www.who.int/iris/handle/10665/254534. |
[2] |
M. Basáñez and M. Boussinesq,
Population biology of human onchocerciasis, Philosophical Transactions: Biological Sciences, 354 (1999), 809-826.
doi: 10.1098/rstb.1999.0433. |
[3] |
L. E. Coffeng, W. A. Stolk, H. G. M. Zouré, J. L. Veerman and K. B. Agblewonu,
African programme for onchocerciasis control 1995-2015: Model-estimated health impact and cost, PLoS Neglected Tropical Diseases, 7 (2013), e2032.
doi: 10.1371/journal.pntd.0002032. |
[4] |
Y. Dadzie, M. Neira and D. Hopkins,
Final report of the conference on the eradicability of onchocerciasis, Filaria Journal, 2 (2003), 22-134.
doi: 10.1186/1475-2883-2-2. |
[5] |
J. B. Davies, Description of a computer model of forest onchocerciasis transmission and its
application to field scenarios of vector control and chemotherapy, Ann Trop Med Parasitol,
87 (1992), 41–63, URL: https://www.ncbi.nlm.nih.gov/pubmed/8346991.
doi: 10.1080/00034983.1993.11812738. |
[6] |
K. Dietz, The population dynamics of onchocerciasis, Population Dynamics of Infectious
Diseases (ed. R. M. Anderson), Chapman and Hall, (1982), 209–241.
doi: 10.1007/978-1-4899-2901-3_7. |
[7] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[8] |
A. Hopkins and B. A. Boatin,
Onchocerciasis, Water and Sanitation-Related Diseases and the Environment: Challenges, Interventions, and Preventive Measures (ed J.M.H. Selendy), John Wiley & Sons, Inc, (2011), 133-149.
doi: 10.1002/9781118148594.ch11. |
[9] |
E. I. Jury,
A simplified stability criterion for linear discrete systems, Proceedings of the IRE, 50 (1962), 1493-1500.
doi: 10.1109/JRPROC.1962.288193. |
[10] |
M. N. Katabarwa, A. Eyamba, P. Nwane, P. Enyong, S. Yaya, J. Baldagai, T. K. Madi, A. Yougouda, G. O. Andze and F. O. Richards,
Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon, The
American Journal Of Tropical Medicine And Hygiene [serial online], 85 (2011), 1041-1049.
doi: 10.4269/ajtmh.2011.11-0333. |
[11] |
G. Ledder,
Forest defoliation scenarios, Math Biosci. Eng., 4 (2007), 15-28.
doi: 10.3934/mbe.2007.4.15. |
[12] |
G. Ledder,
Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer-Verlag, 2013.
doi: 10.1007/978-1-4614-7276-6. |
[13] |
A. P. Plaisier, E. S. Alley, B. A. Boatin, G. J. van Oortmarssen and H. Remme, Irreversible
effects of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control
Programme in West Africa, Journal of Infectious Disease, 172 (1995), 204–210, URL: https://academic.oup.com/jid/article-abstract/172/1/204/853322.
doi: 10.1093/infdis/172.1.204. |
[14] |
A. P. Plaisier, G. J. van Oortmarssen, J. D. F. Habbema, J. Remme and E. S. Alley
ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis, Comput Methods Programs Biomed, 31 (1990), 43–56. URL: https://www.ncbi.nlm.nih.gov/pubmed/2311368.
doi: 10.1016/0169-2607(90)90030-D. |
[15] |
B. Ranganathan,
Onchocerciasis: An overview, Amrita Journal of Medicine, 8 (2012), 1-9.
|
[16] |
J. Remme, O. Ba, K. Y. Dadzie and M. Karam, A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control
Programme in the Volta River basin area, Bulletin of the World Health Organization, 64
(1986), 667–681, URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490951/. |
[17] |
F. Richards, N. Rizzo and A. Domínguez,
One hundred years after its discovery in Guatemala by Rodolfo Robles, Onchocerca volvulus transmission has been eliminated from the Central Endemic Zone, The American Journal Of Tropical Medicine And Hygiene [serial online], 93 (2015), 1295-1304.
doi: 10.4269/ajtmh.15-0364. |
[18] |
W. A. Stolk, M. Walker, L. E. Coffeng, M. G. Basáñez and S. J. de Vlas,
Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modeling analysis, Parasites and Vectors, 8 (2015), 552-567.
doi: 10.1186/s13071-015-1159-9. |
[19] |
H. C. Turner, W. Walker, T. S. Churcher and M. Basáñez,
Modeling the impact of ivermectin on river blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections, Parasites and Vectors, 7 (2014), 241-255.
doi: 10.1186/1756-3305-7-241. |
[20] |
F. Weldegebreal, G. Medhin, Z. Weldegebriel and M. Legesse,
Knowledge, attitude and practice of community drug distributors' about onchocerciasis and community directed treatment with ivermectin in Quara district, North Western Ethiopia, BMC Research Notes, 9 (2016), 1-8.
doi: 10.1186/s13104-016-2010-x. |
show all references
References:
[1] |
African programme for onchocerciasis control: Progress report, 2014-2015, Relevé
Épidémiologique Hebdomadaire / Section D'hygiène Du Secrétariat De La Société Des Nations = Weekly Epidemiological Record / Health Section Of The Secretariat Of The League
Of Nations, 90 (2015), 661–674. URL: http://www.who.int/iris/handle/10665/254534. |
[2] |
M. Basáñez and M. Boussinesq,
Population biology of human onchocerciasis, Philosophical Transactions: Biological Sciences, 354 (1999), 809-826.
doi: 10.1098/rstb.1999.0433. |
[3] |
L. E. Coffeng, W. A. Stolk, H. G. M. Zouré, J. L. Veerman and K. B. Agblewonu,
African programme for onchocerciasis control 1995-2015: Model-estimated health impact and cost, PLoS Neglected Tropical Diseases, 7 (2013), e2032.
doi: 10.1371/journal.pntd.0002032. |
[4] |
Y. Dadzie, M. Neira and D. Hopkins,
Final report of the conference on the eradicability of onchocerciasis, Filaria Journal, 2 (2003), 22-134.
doi: 10.1186/1475-2883-2-2. |
[5] |
J. B. Davies, Description of a computer model of forest onchocerciasis transmission and its
application to field scenarios of vector control and chemotherapy, Ann Trop Med Parasitol,
87 (1992), 41–63, URL: https://www.ncbi.nlm.nih.gov/pubmed/8346991.
doi: 10.1080/00034983.1993.11812738. |
[6] |
K. Dietz, The population dynamics of onchocerciasis, Population Dynamics of Infectious
Diseases (ed. R. M. Anderson), Chapman and Hall, (1982), 209–241.
doi: 10.1007/978-1-4899-2901-3_7. |
[7] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[8] |
A. Hopkins and B. A. Boatin,
Onchocerciasis, Water and Sanitation-Related Diseases and the Environment: Challenges, Interventions, and Preventive Measures (ed J.M.H. Selendy), John Wiley & Sons, Inc, (2011), 133-149.
doi: 10.1002/9781118148594.ch11. |
[9] |
E. I. Jury,
A simplified stability criterion for linear discrete systems, Proceedings of the IRE, 50 (1962), 1493-1500.
doi: 10.1109/JRPROC.1962.288193. |
[10] |
M. N. Katabarwa, A. Eyamba, P. Nwane, P. Enyong, S. Yaya, J. Baldagai, T. K. Madi, A. Yougouda, G. O. Andze and F. O. Richards,
Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon, The
American Journal Of Tropical Medicine And Hygiene [serial online], 85 (2011), 1041-1049.
doi: 10.4269/ajtmh.2011.11-0333. |
[11] |
G. Ledder,
Forest defoliation scenarios, Math Biosci. Eng., 4 (2007), 15-28.
doi: 10.3934/mbe.2007.4.15. |
[12] |
G. Ledder,
Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer-Verlag, 2013.
doi: 10.1007/978-1-4614-7276-6. |
[13] |
A. P. Plaisier, E. S. Alley, B. A. Boatin, G. J. van Oortmarssen and H. Remme, Irreversible
effects of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control
Programme in West Africa, Journal of Infectious Disease, 172 (1995), 204–210, URL: https://academic.oup.com/jid/article-abstract/172/1/204/853322.
doi: 10.1093/infdis/172.1.204. |
[14] |
A. P. Plaisier, G. J. van Oortmarssen, J. D. F. Habbema, J. Remme and E. S. Alley
ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis, Comput Methods Programs Biomed, 31 (1990), 43–56. URL: https://www.ncbi.nlm.nih.gov/pubmed/2311368.
doi: 10.1016/0169-2607(90)90030-D. |
[15] |
B. Ranganathan,
Onchocerciasis: An overview, Amrita Journal of Medicine, 8 (2012), 1-9.
|
[16] |
J. Remme, O. Ba, K. Y. Dadzie and M. Karam, A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control
Programme in the Volta River basin area, Bulletin of the World Health Organization, 64
(1986), 667–681, URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490951/. |
[17] |
F. Richards, N. Rizzo and A. Domínguez,
One hundred years after its discovery in Guatemala by Rodolfo Robles, Onchocerca volvulus transmission has been eliminated from the Central Endemic Zone, The American Journal Of Tropical Medicine And Hygiene [serial online], 93 (2015), 1295-1304.
doi: 10.4269/ajtmh.15-0364. |
[18] |
W. A. Stolk, M. Walker, L. E. Coffeng, M. G. Basáñez and S. J. de Vlas,
Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modeling analysis, Parasites and Vectors, 8 (2015), 552-567.
doi: 10.1186/s13071-015-1159-9. |
[19] |
H. C. Turner, W. Walker, T. S. Churcher and M. Basáñez,
Modeling the impact of ivermectin on river blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections, Parasites and Vectors, 7 (2014), 241-255.
doi: 10.1186/1756-3305-7-241. |
[20] |
F. Weldegebreal, G. Medhin, Z. Weldegebriel and M. Legesse,
Knowledge, attitude and practice of community drug distributors' about onchocerciasis and community directed treatment with ivermectin in Quara district, North Western Ethiopia, BMC Research Notes, 9 (2016), 1-8.
doi: 10.1186/s13104-016-2010-x. |





[1] |
Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509 |
[2] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[3] |
Carlos Castillo-Chavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361-404. doi: 10.3934/mbe.2004.1.361 |
[4] |
Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347 |
[5] |
G. Caginalp, Christof Eck. Rapidly converging phase field models via second order asymptotics. Conference Publications, 2005, 2005 (Special) : 142-152. doi: 10.3934/proc.2005.2005.142 |
[6] |
Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic and Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201 |
[7] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[8] |
Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531 |
[9] |
J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783 |
[10] |
Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107 |
[11] |
Thierry Horsin, Mohamed Ali Jendoubi. Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 999-1025. doi: 10.3934/cpaa.2022007 |
[12] |
Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks and Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149 |
[13] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[14] |
Yang Yang, Kam C. Yuen, Jun-Feng Liu. Asymptotics for ruin probabilities in Lévy-driven risk models with heavy-tailed claims. Journal of Industrial and Management Optimization, 2018, 14 (1) : 231-247. doi: 10.3934/jimo.2017044 |
[15] |
Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048 |
[16] |
S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999 |
[17] |
Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss. Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences & Engineering, 2006, 3 (3) : 545-556. doi: 10.3934/mbe.2006.3.545 |
[18] |
Andreas Widder. On the usefulness of set-membership estimation in the epidemiology of infectious diseases. Mathematical Biosciences & Engineering, 2018, 15 (1) : 141-152. doi: 10.3934/mbe.2018006 |
[19] |
Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479 |
[20] |
Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2223-2243. doi: 10.3934/dcdsb.2019225 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]