|
Z. Akalin Acar
and S. Makeig
, Effects of Forward Model Errors on EEG Source Localization, Brain Topogrography, 26 (2013)
, 378-396.
|
|
A. Alonso-Rodriguez
, J. Camano
, R. Rodriguez
and A. Valli
, Assessment of two approximation methods for the inverse problem of electroencephalography, Int. J. of Numerical Analysis and Modeling, 13 (2016)
, 587-609.
|
|
H. Azizollahi
, A. Aarabi
and F. Wallois
, Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates, Hum. Brain Ma, 37 (2016)
, 3604-3622.
doi: 10.1002/hbm.23263.
|
|
H. T. Banks
, D. Rubio
and N. Saintier
, Optimal design for parameter estimation in EEG problems in a 3D multilayered domain, Mathematical Biosciences and Engineering, 12 (2015)
, 739-760.
doi: 10.3934/mbe.2015.12.739.
|
|
M. Bauer
, S. Pursiainen
, J. Vorwerk
, H. Köstler
and C. H. Wolters
, Comparison Study for Whitney (Raviart-Thomas)-Type Source Models in Finite-Element-Method-Based EEG Forward Modeling, IEEE Trans. Biomed. Eng., 62 (2015)
, 2648-2656.
doi: 10.1109/TBME.2015.2439282.
|
|
J. Borggaard and V. L. Nunes,
Fréchet Sensitivity Analysis for Partial Differential Equations with Distributed Parameters, American Control Conference, San Francisco, 2011.
|
|
H. Brezis,
Functional Analysis, Sobolev Spaces And Partial Differential Equations, Universitext. Springer, New York, 2011.
|
|
P. G. Ciarlet,
The Finite Element Method for Elliptic Problems, North Holland, New York, 1978.
|
|
M. Clerc
and J. Kybic
, Cortical mapping by Laplace-Cauchy transmission using a boundary element method, Journal on Inverse Problems, 23 (2007)
, 2589-2601.
doi: 10.1088/0266-5611/23/6/020.
|
|
M. Clerc, J. Leblond, J. -P. Marmorat and T. Papadopoulo,
Source localization using rational approximation on plane sections,
Inverse Problems, 28 (2012), 055018, 24 pp.
|
|
M. Darbas, M. M. Diallo, A. El Badia and S. Lohrengel,
An inverse dipole source problem in inhomogeneous media: application to the EEG source localization in neonates, in preparation.
|
|
A. El Badia
and T. Ha Duong
, An inverse source problem in potential analysis, Inverse Problems, 16 (2000)
, 651-663.
doi: 10.1088/0266-5611/16/3/308.
|
|
A. El Badia
and M. Farah
, Identification of dipole sources in an elliptic equation from boundary measurements, J. Inv. Ill-Posed Problems, 14 (2006)
, 331-353.
doi: 10.1515/156939406777571012.
|
|
A. El Badia and M. Farah,
A stable recovering of dipole sources from partial boundary measurements,
Inverse Problems, 26 (2010), 115006, 24pp.
|
|
Q. Fang and D. A. Boas, Tetrahedral mesh generation from volumetric binary and grayscale
images, EEE International Symposium on Biomedical Imaging: From Nano to Macro,
(2009), SBI? 09. Boston, Massachusetts, USA, 1142–1145.
|
|
M. Farah,
Problémes Inverses de Sources et Lien avec l'Electro-encéphalo-graphie, Thése de doctorat, Université de Technologie de Compiégne, 2007.
|
|
O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand,
The Inverse EEG and MEG Problems: The Adjoint State Approach I: The Continuous Case ,Rapport de recherche, 1999.
|
|
P. Gargiulo
, P. Belfiore
, E. A. Friogeirsson
, S. Vanhalato
and C. Ramon
, The effect of fontanel on scalp EEG potentials in the neonate, Clin. Neurophysiol, 126 (2015)
, 1703-1710.
doi: 10.1016/j.clinph.2014.12.002.
|
|
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order Springer, Berlin, 1977.
|
|
R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis and B. Vanrumste, Review on solving the inverse problem in EEG source analysis J. NeuorEng. Rehabil. , 5 (2008).
doi: 10.1186/1743-0003-5-25.
|
|
H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De Clercq, A. Vergult, Y. d'Asseler, K. P. Camilleri, S. G. Fabri, S. Van Huffel and I. Lemahieu, Review on solving the forward problem in EEG source analysis J. NeuorEng. Rehabil., 4 (2007).
doi: 10.1186/1743-0003-4-46.
|
|
M. Hämäläinen
, R. Hari
, J. Ilmoniemi
, J. Knuutila
and O. V. Lounasmaa
, Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., 65 (1993)
, 413-497.
|
|
F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka,
FreeFem++ Manual, 2014.
|
|
E. Hernández
and R. Rodríguez
, Finite element Approximation of Spectral Problems with Neumann Boundary Conditions on curved domains, Math. Comp., 72 (2002)
, 1099-1115.
|
|
R. Kress,
Linear Integral Equations, Second edition, Applied Mathematical Sciences 82, Spinger-Verlag, 1999.
|
|
J. Kybic
, M. Clerc
, T. Abboud
, O. Faugeras
, R. Keriven
and T. Papadopoulo
, A common formalism for the integral formulations of the forward EEG Problem, IEEE Transactions on Medical Imaging, 24 (2005)
, 12-28.
doi: 10.1109/TMI.2004.837363.
|
|
J. Kybic
, M. Clerc
, O. Faugeras
, R. Keriven
and T. Papadopoulo
, Fast multipole acceleration of the MEG/EEG boundary element method, Physics in Medicine and Biology, 50 (2005)
, 4695-4710.
doi: 10.1088/0031-9155/50/19/018.
|
|
J. Kybic
, M. Clerc
, T. Abboud
, O. Faugeras
, R. Keriven
and T. Papadopoulo
, Generalized head models for MEG/EEG: Boundary element method beyond nested volumes, Phys. Med. Biol., 51 (2006)
, 1333-1346.
doi: 10.1088/0031-9155/51/5/021.
|
|
J. Leblond
, Identifiability properties for inverse problems in EEG data processing and medical engineering, with observability and optimization issues, Acta Applicandae Mathematicae, 135 (2015)
, 175-190.
doi: 10.1007/s10440-014-9951-7.
|
|
S. Lew
, D. D. Silva
, M. Choe
, P. Ellen Grant
, Y. Okada
, C. H. Wolters
and M. S. Hämäläinen
, Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model, Neuroimage, 76 (2013)
, 282-293.
doi: 10.1016/j.neuroimage.2013.03.017.
|
|
T. Medani
, D. Lautru
, D. Schwartz
, Z. Ren
and G. Sou
, FEM method for the EEG forward problem and improvement based on modification of the saint venant's method, Progress In Electromagnetic Research, 153 (2015)
, 11-22.
|
|
J. C. de Munck
and M. J. Peters
, A fast method to compute the potential in the multisphere model, IEEE Trans. Biomed. Eng., 40 (1993)
, 1166-1174.
|
|
Odabaee
, A. Tokariev
, S. Layeghy
, M. Mesbah
, P. B. Colditz
, C. Ramon
and S. Vanhatalo
, Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models, NeuroImage, 96 (2014)
, 73-80.
|
|
P. A. Raviart and J. M. Thomas,
Introduction á l'Analyse Numérique des Equations aux Dérivées Partielles, Masson, Paris, 1983.
|
|
N. Roche-Labarbe
, A. Aarabi
, G. Kongolo
, C. Gondry-Jouet
, M. Dümpelmann
, R. Grebe
and F. Wallois
, High-resolution electroencephalography and source localization in neonates, Human Brain Mapping, 29 (2008)
, 167-76.
doi: 10.1002/hbm.20376.
|
|
C. Rorden
, L. Bonilha
, J. Fridriksson
, B. Bender
and H. O. Karnath
, Age-specific CT and MRI templates for spatial normalization, NeuroImage, 61 (2012)
, 957-965.
doi: 10.1016/j.neuroimage.2012.03.020.
|
|
M. Schneider, A multistage process for computing virtual dipole sources of EEG discharges from surface information, IEEE Trans. on Biomed. Eng., 19, 1-19.
|
|
M. I. Troparevsky, D. Rubio and N. Saintier, Sensitivity analysis for the EEG forward problem Frontiers in Computational Neuroscience, 4 (2010), p138.
doi: 10.3389/fncom.2010.00138.
|
|
J. Vorwerk
, J. H. Cho
, S. Rampp
, H. Hamer
, T. T. Knösche
and C. H. Wolters
, A guideline for head volume conductor modeling in EEG and MEG, NeuroImage, 100 (2014)
, 590-607.
doi: 10.1016/j.neuroimage.2014.06.040.
|
|
C. H. Wolters
, H. Köstler
, C. Möller
, J. Härdtlein
, L. Grasedyck
and W. Hackbusch
, Numerical mathematics of the subtraction approach for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput., 30 (2007)
, 24-45.
|
|
C. H. Wolters
, H. Köstler
, C. Möller
, J. Härdtlein
and A. Anwander
, Numerical approaches for dipole modeling in finite element method based source analysis, Int. Congress Ser., 1300 (2007)
, 189-192.
doi: 10.1016/j.ics.2007.02.014.
|
|
Z. Zhang
, A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres, Phys. Med. Biol., 40 (1995)
, 335-349.
doi: 10.1088/0031-9155/40/3/001.
|