
-
Previous Article
A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis
- MBE Home
- This Issue
-
Next Article
Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion
Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes
1. | School of Mathematics and Statistics, Xinyang Normal University, Xinyang 46400, China |
2. | Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA |
3. | Department of Mathematics, Columbus State University, Columbus, Georgia 31907, USA |
To prevent the transmissions of mosquito-borne diseases (e.g., malaria, dengue fever), recent works have considered the problem of using the sterile insect technique to reduce or eradicate the wild mosquito population. It is important to consider how reproductive advantage of the wild mosquito population offsets the success of population replacement. In this work, we explore the interactive dynamics of the wild and sterile mosquitoes by incorporating the delay in terms of the growth stage of the wild mosquitoes. We analyze (both analytically and numerically) the role of time delay in two different ways of releasing sterile mosquitoes. Our results demonstrate that in the case of constant release rate, the delay does not affect the dynamics of the system and every solution of the system approaches to an equilibrium point; while in the case of the release rate proportional to the wild mosquito populations, the delay has a large effect on the dynamics of the system, namely, for some parameter ranges, when the delay is small, every solution of the system approaches to an equilibrium point; but as the delay increases, the solutions of the system exhibit oscillatory behavior via Hopf bifurcations. Numerical examples and bifurcation diagrams are also given to demonstrate rich dynamical features of the model in the latter release case.
References:
[1] |
R. Abdul-Ghani, H. F. Farag, A. F. Allam and A. A. Azazy,
Measuring resistant-genotype transmission of malaria parasites: challenges and prospects, Parasitol Res., 113 (2014), 1481-1487.
doi: 10.1007/s00436-014-3789-9. |
[2] |
P. L. Alonso, G. Brown, M. Arevalo-Herrera, et al, A research agenda to underpin malaria eradication, PLoS Med., 8 (2011), e1000406.
doi: 10.1371/journal.pmed.1000406. |
[3] |
L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson,
Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Dis., 10 (2010), 295-311.
doi: 10.1089/vbz.2009.0014. |
[4] |
J. Arino, L. Wang and G. S. Wolkowicz,
An alternative formulation for a delayed logistic equation, J. Theor. Biol., 241 (2006), 109-119.
doi: 10.1016/j.jtbi.2005.11.007. |
[5] |
M. Q. Benedict and A. S. Robinson,
The first releases of transgenic mosquitoes: An argument for the sterile insect technique, Trends Parasitol, 19 (2003), 349-355.
doi: 10.1016/S1471-4922(03)00144-2. |
[6] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[7] |
J. G. Breman,
The ears of the hippopotamus: Manifestations, determinants, and estimates of the malaria burden, Am. J. Trop. Med. Hyg., 64 (2001), 1-11.
doi: 10.4269/ajtmh.2001.64.1. |
[8] |
W. G. Brogdon and J. C. McAllister,
Insecticide resistance and vector control, J. Agromedicine, 6 (1999), 41-58.
|
[9] |
L. Cai, S. Ai and J. Li,
Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math., 74 (2014), 1786-1809.
doi: 10.1137/13094102X. |
[10] |
K. Cooke, P. van den Driessche and X. Zou,
Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.
doi: 10.1007/s002850050194. |
[11] |
H. Diaz, A. A. Ramirez, A. Olarte and C. Clavijo,
A model for the control of malaria using genetically modified vectors, J. Theor. Biol., 276 (2011), 57-66.
doi: 10.1016/j.jtbi.2011.01.053. |
[12] |
J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960. |
[13] |
Y. Dumont and J. M. Tchuenche,
Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809-854.
doi: 10.1007/s00285-011-0477-6. |
[14] |
V. A. Dyck, J. Hendrichs and A. S. Robinson, Sterile insect technique -principles and practice in area-wide integrated pest management, Springer, The Netherlands, 2005. |
[15] |
C. Dye,
Models for the population dynamics of the yellow fever mosquito, Aedes aegypti, J. Anim. Ecol., 53 (1984), 247-268.
doi: 10.2307/4355. |
[16] |
L. Esteva and H. M. Yang,
Assessing the effects of temperature and dengue virus load on dengue transmission, J. Biol. Syst., 23 (2015), 527-554.
doi: 10.1142/S0218339015500278. |
[17] |
L. Esteva and H. M. Yang,
Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci., 198 (2005), 132-147.
doi: 10.1016/j.mbs.2005.06.004. |
[18] |
J. E. Gentile, S. Rund and G. R Madey,
Modelling sterile insect technique to control the population of Anopheles gambiae, Malaria J., 14 (2015), 92-103.
doi: 10.1186/s12936-015-0587-5. |
[19] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equation, Springer, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[20] |
J. Ito, A. Ghosh, L. A. Moreira, E. A. Wilmmer and M. Jacobs-Lorena,
Transgenic anopheline mosquitoes impaired in transmission of a malria parasite, Nature, 417 (2002), 452-455.
|
[21] |
M. Jankovic and S. Petrovskii,
Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theor Ecol., 7 (2014), 335-349.
doi: 10.1007/s12080-014-0222-z. |
[22] |
E. F. Knipling,
Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol., 48 (1955), 459-462.
|
[23] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. |
[24] |
S. S. Lee, R. E. Baker, E. A. Gaffney and S. M. White,
Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks, J. Theor. Biol., 331 (2013), 78-90.
doi: 10.1016/j.jtbi.2013.04.014. |
[25] |
M. A. Lewis and P. van den Driessche,
Waves of extinction from sterile insect release, Math. Biosci., 116 (1993), 221-247.
doi: 10.1016/0025-5564(93)90067-K. |
[26] |
J. Li,
New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyna., 11 (2017), 316-333.
doi: 10.1080/17513758.2016.1216613. |
[27] |
J. Li, L. Cai and Y. Li,
Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol.Dyna., 11 (2017), 79-101.
doi: 10.1080/17513758.2016.1159740. |
[28] |
J. Lu and J. Li,
Dynamics of stage-structured discrete mosquito population, J. Appl. Anal. Comput., 1 (2011), 53-67.
|
[29] |
G. J. Lycett and F. C. Kafatos,
Anti-malaria mosquitoes?, Nautre, 417 (2002), 387-388.
|
[30] |
C. W. Morin and A. C. Comrie,
Regional and seasonal response of a West Nile virus vector to climate change, PNAS, 110 (2013), 15620-15625.
doi: 10.1073/pnas.1307135110. |
[31] |
W. W. Murdoch, C. J. Briggs and R. M. Nisbet, Consumer-resource dynamics, Princeton University Press, New Jersey, USA, 2003. |
[32] |
H. K. Phuc, M. H. Andreasen, et al, Late-acting dominant lethal genetic systems and mosquito control, BMC. Biol., 5 (2007), 11–16.
doi: 10.1186/1741-7007-5-11. |
[33] |
E. P. Pliego, J. Vel$\acute{a}$zquez-Castro and A. F. Collar,
Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks, Appl. Math. Model., 50 (2017), 484-496.
doi: 10.1016/j.apm.2017.06.003. |
[34] |
M. Rafikov, L. Bevilacqua and A. P. Wyse,
Optimal control strategy of malaria vector using genetically modified mosquitoes, J. Theor. Biol., 258 (2009), 418-425.
doi: 10.1016/j.jtbi.2008.08.006. |
[35] |
S. J. Schreiber,
Allee effect, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.
doi: 10.1016/S0040-5809(03)00072-8. |
[36] |
J. Smith, M. Amador and R. Barrera,
Seasonal and habitat effects on dengue and West Nile Virus Vectors in San Juan, Puerto Rico, J. Am. Mosq. Control. Assoc., 25 (2009), 38-46.
doi: 10.2987/08-5782.1. |
[37] |
H. Townson, SIT for African malaria vectors: Epilogue, Malar. J., 8 (2009), S10.
doi: 10.1186/1475-2875-8-S2-S10. |
[38] |
WHO, 10 facts on malaria, http://www.who.int/features/factfiles/malaria/en/. |
[39] |
J. Wu, H. R. Thieme, Y. Lou and G. Fan,
Stability and persistence in ODE models for populations with many stages, Math. Biosc. Eng., 12 (2015), 661-686.
doi: 10.3934/mbe.2015.12.661. |
[40] |
B. Zheng, M. Tang and J. Yu,
Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.
doi: 10.1137/13093354X. |
[41] |
B. Zheng, M. Tang, J. Yu and J. Qiu,
Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.
doi: 10.1007/s00285-017-1142-5. |
show all references
References:
[1] |
R. Abdul-Ghani, H. F. Farag, A. F. Allam and A. A. Azazy,
Measuring resistant-genotype transmission of malaria parasites: challenges and prospects, Parasitol Res., 113 (2014), 1481-1487.
doi: 10.1007/s00436-014-3789-9. |
[2] |
P. L. Alonso, G. Brown, M. Arevalo-Herrera, et al, A research agenda to underpin malaria eradication, PLoS Med., 8 (2011), e1000406.
doi: 10.1371/journal.pmed.1000406. |
[3] |
L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson,
Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Dis., 10 (2010), 295-311.
doi: 10.1089/vbz.2009.0014. |
[4] |
J. Arino, L. Wang and G. S. Wolkowicz,
An alternative formulation for a delayed logistic equation, J. Theor. Biol., 241 (2006), 109-119.
doi: 10.1016/j.jtbi.2005.11.007. |
[5] |
M. Q. Benedict and A. S. Robinson,
The first releases of transgenic mosquitoes: An argument for the sterile insect technique, Trends Parasitol, 19 (2003), 349-355.
doi: 10.1016/S1471-4922(03)00144-2. |
[6] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[7] |
J. G. Breman,
The ears of the hippopotamus: Manifestations, determinants, and estimates of the malaria burden, Am. J. Trop. Med. Hyg., 64 (2001), 1-11.
doi: 10.4269/ajtmh.2001.64.1. |
[8] |
W. G. Brogdon and J. C. McAllister,
Insecticide resistance and vector control, J. Agromedicine, 6 (1999), 41-58.
|
[9] |
L. Cai, S. Ai and J. Li,
Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math., 74 (2014), 1786-1809.
doi: 10.1137/13094102X. |
[10] |
K. Cooke, P. van den Driessche and X. Zou,
Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.
doi: 10.1007/s002850050194. |
[11] |
H. Diaz, A. A. Ramirez, A. Olarte and C. Clavijo,
A model for the control of malaria using genetically modified vectors, J. Theor. Biol., 276 (2011), 57-66.
doi: 10.1016/j.jtbi.2011.01.053. |
[12] |
J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960. |
[13] |
Y. Dumont and J. M. Tchuenche,
Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809-854.
doi: 10.1007/s00285-011-0477-6. |
[14] |
V. A. Dyck, J. Hendrichs and A. S. Robinson, Sterile insect technique -principles and practice in area-wide integrated pest management, Springer, The Netherlands, 2005. |
[15] |
C. Dye,
Models for the population dynamics of the yellow fever mosquito, Aedes aegypti, J. Anim. Ecol., 53 (1984), 247-268.
doi: 10.2307/4355. |
[16] |
L. Esteva and H. M. Yang,
Assessing the effects of temperature and dengue virus load on dengue transmission, J. Biol. Syst., 23 (2015), 527-554.
doi: 10.1142/S0218339015500278. |
[17] |
L. Esteva and H. M. Yang,
Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci., 198 (2005), 132-147.
doi: 10.1016/j.mbs.2005.06.004. |
[18] |
J. E. Gentile, S. Rund and G. R Madey,
Modelling sterile insect technique to control the population of Anopheles gambiae, Malaria J., 14 (2015), 92-103.
doi: 10.1186/s12936-015-0587-5. |
[19] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equation, Springer, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[20] |
J. Ito, A. Ghosh, L. A. Moreira, E. A. Wilmmer and M. Jacobs-Lorena,
Transgenic anopheline mosquitoes impaired in transmission of a malria parasite, Nature, 417 (2002), 452-455.
|
[21] |
M. Jankovic and S. Petrovskii,
Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theor Ecol., 7 (2014), 335-349.
doi: 10.1007/s12080-014-0222-z. |
[22] |
E. F. Knipling,
Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol., 48 (1955), 459-462.
|
[23] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. |
[24] |
S. S. Lee, R. E. Baker, E. A. Gaffney and S. M. White,
Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks, J. Theor. Biol., 331 (2013), 78-90.
doi: 10.1016/j.jtbi.2013.04.014. |
[25] |
M. A. Lewis and P. van den Driessche,
Waves of extinction from sterile insect release, Math. Biosci., 116 (1993), 221-247.
doi: 10.1016/0025-5564(93)90067-K. |
[26] |
J. Li,
New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyna., 11 (2017), 316-333.
doi: 10.1080/17513758.2016.1216613. |
[27] |
J. Li, L. Cai and Y. Li,
Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol.Dyna., 11 (2017), 79-101.
doi: 10.1080/17513758.2016.1159740. |
[28] |
J. Lu and J. Li,
Dynamics of stage-structured discrete mosquito population, J. Appl. Anal. Comput., 1 (2011), 53-67.
|
[29] |
G. J. Lycett and F. C. Kafatos,
Anti-malaria mosquitoes?, Nautre, 417 (2002), 387-388.
|
[30] |
C. W. Morin and A. C. Comrie,
Regional and seasonal response of a West Nile virus vector to climate change, PNAS, 110 (2013), 15620-15625.
doi: 10.1073/pnas.1307135110. |
[31] |
W. W. Murdoch, C. J. Briggs and R. M. Nisbet, Consumer-resource dynamics, Princeton University Press, New Jersey, USA, 2003. |
[32] |
H. K. Phuc, M. H. Andreasen, et al, Late-acting dominant lethal genetic systems and mosquito control, BMC. Biol., 5 (2007), 11–16.
doi: 10.1186/1741-7007-5-11. |
[33] |
E. P. Pliego, J. Vel$\acute{a}$zquez-Castro and A. F. Collar,
Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks, Appl. Math. Model., 50 (2017), 484-496.
doi: 10.1016/j.apm.2017.06.003. |
[34] |
M. Rafikov, L. Bevilacqua and A. P. Wyse,
Optimal control strategy of malaria vector using genetically modified mosquitoes, J. Theor. Biol., 258 (2009), 418-425.
doi: 10.1016/j.jtbi.2008.08.006. |
[35] |
S. J. Schreiber,
Allee effect, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.
doi: 10.1016/S0040-5809(03)00072-8. |
[36] |
J. Smith, M. Amador and R. Barrera,
Seasonal and habitat effects on dengue and West Nile Virus Vectors in San Juan, Puerto Rico, J. Am. Mosq. Control. Assoc., 25 (2009), 38-46.
doi: 10.2987/08-5782.1. |
[37] |
H. Townson, SIT for African malaria vectors: Epilogue, Malar. J., 8 (2009), S10.
doi: 10.1186/1475-2875-8-S2-S10. |
[38] |
WHO, 10 facts on malaria, http://www.who.int/features/factfiles/malaria/en/. |
[39] |
J. Wu, H. R. Thieme, Y. Lou and G. Fan,
Stability and persistence in ODE models for populations with many stages, Math. Biosc. Eng., 12 (2015), 661-686.
doi: 10.3934/mbe.2015.12.661. |
[40] |
B. Zheng, M. Tang and J. Yu,
Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.
doi: 10.1137/13093354X. |
[41] |
B. Zheng, M. Tang, J. Yu and J. Qiu,
Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.
doi: 10.1007/s00285-017-1142-5. |










[1] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[2] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[3] |
Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559 |
[4] |
Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139 |
[5] |
Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044 |
[6] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[7] |
Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657 |
[8] |
Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026 |
[9] |
Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 |
[10] |
Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367 |
[11] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[12] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[13] |
Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022082 |
[14] |
Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
[15] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[16] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[17] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[18] |
Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229 |
[19] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[20] |
Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]