
-
Previous Article
Analysis of a mathematical model for brain lactate kinetics
- MBE Home
- This Issue
-
Next Article
Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes
A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis
1. | Division of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, UK |
2. | Department of Medical Imaging, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, 37212, USA |
3. | Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA |
We quantify a recent five-category CT histogram based classification of ground glass opacities using a dynamic mathematical model for the spatial-temporal evolution of malignant nodules. Our mathematical model takes the form of a spatially structured partial differential equation with a logistic crowding term. We present the results of extensive simulations and validate our model using patient data obtained from clinical CT images from patients with benign and malignant lesions.
References:
[1] |
D. Ambrosi and F. Mollica,
On the mechanics of a growing tumor, Int. J. Eng. Sci., 40 (2002), 1297-1316.
doi: 10.1016/S0020-7225(02)00014-9. |
[2] |
H. Ammari,
Mathematical Modeling in Biomedical Imaging 1. Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Springer Science and Business Media, New York, 2009.
doi: 10.1007/978-3-642-03444-2. |
[3] |
A. R. A. Anderson, A. M. Weaver, P. T. Cummings and V. Quaranta,
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127 (2006), 905-915.
|
[4] |
F. R. Balkwill, M. Capasso and T. Hagemann,
The tumor microenvironment at a glance, J. Cell Sci., 125 (2012), 5591-5596.
doi: 10.1242/jcs.116392. |
[5] |
T. M. Buzug,
Computed Tomography, from Photon Statistics to Modern Cone-beam CT, Springer-Verlag, Berlin-Heidelberg-New York, 2008. |
[6] |
Á. Calsina and J. Z. Farkas,
Positive steady states of nonlinear evolution equations with finite dimensional nonlinearities, SIAM J. Math. Anal., 46 (2014), 1406-1426.
doi: 10.1137/130931199. |
[7] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments Ⅱ, SIAM J. Math. Anal., 22 (1991), 1043-1064.
doi: 10.1137/0522068. |
[8] |
O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain and N. Ayache,
Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imag., 24 (2005), 1334-1346.
doi: 10.1109/TMI.2005.857217. |
[9] |
F. Cornelis, O. Saut, P. Cumsille, D. Lombardi, A. Iollo, J. Palussiere and T. Colin,
In vivo mathematical modeling of tumor growth from imaging data: Soon to come in the future?, Diag. Inter. Imag., 94 (2013), 593-600.
|
[10] |
H. Enderling and M. A. J. Chaplain,
Mathematical modeling of tumor growth and treatment, Curr. Pharm. Des., 20 (2014), 4934-4940.
doi: 10.2174/1381612819666131125150434. |
[11] |
R. A. Gatenby, P. K. Maini and E. T. Gawlinski,
Analysis of a tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy, Appl. Math. Lett., 15 (2002), 339-345.
doi: 10.1016/S0893-9659(01)00141-0. |
[12] |
C. I. Henschke, D. F. Yankelevitz, R. Yip, A. P. Reeves, D. Xu, J. P. Smith, D. M. Libby, M. W. Pasmantier and O. S. Miettinen,
Lung cancers diagnosed at annual CT screening: Volume doubling times, Radiology, 263 (2012), 578-583.
doi: 10.1148/radiol.12102489. |
[13] |
C. I. Henschke, R. Yip, J. P. Smith, A. S. Wolf, R. M. Flores, M. Liang, M. M. Salvatore, Y. Liu, D. M. Xu and D. F. Yankelevitz,
CT screening for lung cancer: Part-solid nodules in baseline and annual repeat rounds, Am. J. Roentgenol, 207 (2016), 1176-1184.
doi: 10.2214/AJR.16.16043. |
[14] |
G. N. Hounsfield,
Computed medical imaging, Nobel Lecture, J. Comput. Assist. Tomogr., 4 (1980), 665-674.
|
[15] |
Y. Kawata, N. Niki, H. Ohmatsu, M. Kusumoto, T. Tsuchida, K. Eguchi, M. Kaneko and N. Moriyama,
Quantitative classification based on CT histogram analysis of non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free survival, Med. Phys., 39 (2012), 988-1000.
doi: 10.1118/1.3679017. |
[16] |
E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M-A. Weber, E. Mandonnet, H. Delingette and N. Ayache,
Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations, IEEE Trans. Med. Imag., 29 (2010), 77-95.
doi: 10.1109/TMI.2009.2026413. |
[17] |
Y. Kuang, J. D. Nagy and S. E. Eikenberry,
Introduction to Mathematical Oncology, Mathematical and Computational Biology Series, Taylor & Francis Group, Boca Raton-London-New York, 2016. |
[18] |
J. S. Lowengrub, H. B. Feiboes, F. Jin, Y.-I. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini,
Nonlinear modelling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), R1-R91.
doi: 10.1088/0951-7715/23/1/R01. |
[19] |
R. H. Martin,
Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York-London-Sydney, 1976. |
[20] |
D. Morgensztern, K. Politi and R. S. Herbst,
EGFR Mutations in non-small-cell lung cancer: Find, divide, and conquer, JAMA Oncol., 1 (2015), 146-148.
|
[21] |
D. P. Naidich, A. A. Bankier, H. MacMahon, C. M. Schaefer-Prokop, M. Pistolesi, J. M. Goo, P. Macchiarini, J. D. Crapo, C. J. Herold, J. H. Austin and W. D. Travis,
Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner Society, Radiology, 266 (2013), 304-317.
doi: 10.1148/radiol.12120628. |
[22] |
National lung screening trial research team, Reduced lung-cancer mortality with low-dose
computed tomographic screening, N. Engl. J. Med., 365 (2011), 395–409. |
[23] |
J. Prüss,
Equilibrium solutions of age-specific population dynamics of several species, J. Math. Biol., 11 (1981), 65-84.
doi: 10.1007/BF00275825. |
[24] |
R. Rockne, E. C. Alvord, Jr., M. Szeto, S. Gu, G. Chakraborty and K. R. Swanson, Modeling
diffusely invading brain tumors: An individualized approach to quantifying glioma evolution
and response to therapy, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune
Competition and Therapy, Modeling and Simulation in Science, Engineering and Technology
Series, Birkh¨auserBoston, Boston, MA, 2008,207–221. |
[25] |
K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord Jr.,
Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003), 1-10.
doi: 10.1016/j.jns.2003.06.001. |
[26] |
C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, K. Jusenius, J. M. Wardlaw, T. Cloughesy, A. M. Spence, R. Rockne, E. C. Alvord Jr. and K. R. Swanson,
Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Can. Res., 69 (2009), 9133-9140.
doi: 10.1158/0008-5472.CAN-08-3863. |
[27] |
A. Y. Yakovlev, A. V. Zorin and B. I. Grudinko,
Computer Simulation in Cell Radiobiology, Lecture Notes in Biomathematics, 74, Springer-Verlag, Berlin-Heidelberg-New York, 1988.
doi: 10.1007/978-3-642-51716-7. |
show all references
References:
[1] |
D. Ambrosi and F. Mollica,
On the mechanics of a growing tumor, Int. J. Eng. Sci., 40 (2002), 1297-1316.
doi: 10.1016/S0020-7225(02)00014-9. |
[2] |
H. Ammari,
Mathematical Modeling in Biomedical Imaging 1. Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Springer Science and Business Media, New York, 2009.
doi: 10.1007/978-3-642-03444-2. |
[3] |
A. R. A. Anderson, A. M. Weaver, P. T. Cummings and V. Quaranta,
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127 (2006), 905-915.
|
[4] |
F. R. Balkwill, M. Capasso and T. Hagemann,
The tumor microenvironment at a glance, J. Cell Sci., 125 (2012), 5591-5596.
doi: 10.1242/jcs.116392. |
[5] |
T. M. Buzug,
Computed Tomography, from Photon Statistics to Modern Cone-beam CT, Springer-Verlag, Berlin-Heidelberg-New York, 2008. |
[6] |
Á. Calsina and J. Z. Farkas,
Positive steady states of nonlinear evolution equations with finite dimensional nonlinearities, SIAM J. Math. Anal., 46 (2014), 1406-1426.
doi: 10.1137/130931199. |
[7] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments Ⅱ, SIAM J. Math. Anal., 22 (1991), 1043-1064.
doi: 10.1137/0522068. |
[8] |
O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain and N. Ayache,
Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imag., 24 (2005), 1334-1346.
doi: 10.1109/TMI.2005.857217. |
[9] |
F. Cornelis, O. Saut, P. Cumsille, D. Lombardi, A. Iollo, J. Palussiere and T. Colin,
In vivo mathematical modeling of tumor growth from imaging data: Soon to come in the future?, Diag. Inter. Imag., 94 (2013), 593-600.
|
[10] |
H. Enderling and M. A. J. Chaplain,
Mathematical modeling of tumor growth and treatment, Curr. Pharm. Des., 20 (2014), 4934-4940.
doi: 10.2174/1381612819666131125150434. |
[11] |
R. A. Gatenby, P. K. Maini and E. T. Gawlinski,
Analysis of a tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy, Appl. Math. Lett., 15 (2002), 339-345.
doi: 10.1016/S0893-9659(01)00141-0. |
[12] |
C. I. Henschke, D. F. Yankelevitz, R. Yip, A. P. Reeves, D. Xu, J. P. Smith, D. M. Libby, M. W. Pasmantier and O. S. Miettinen,
Lung cancers diagnosed at annual CT screening: Volume doubling times, Radiology, 263 (2012), 578-583.
doi: 10.1148/radiol.12102489. |
[13] |
C. I. Henschke, R. Yip, J. P. Smith, A. S. Wolf, R. M. Flores, M. Liang, M. M. Salvatore, Y. Liu, D. M. Xu and D. F. Yankelevitz,
CT screening for lung cancer: Part-solid nodules in baseline and annual repeat rounds, Am. J. Roentgenol, 207 (2016), 1176-1184.
doi: 10.2214/AJR.16.16043. |
[14] |
G. N. Hounsfield,
Computed medical imaging, Nobel Lecture, J. Comput. Assist. Tomogr., 4 (1980), 665-674.
|
[15] |
Y. Kawata, N. Niki, H. Ohmatsu, M. Kusumoto, T. Tsuchida, K. Eguchi, M. Kaneko and N. Moriyama,
Quantitative classification based on CT histogram analysis of non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free survival, Med. Phys., 39 (2012), 988-1000.
doi: 10.1118/1.3679017. |
[16] |
E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M-A. Weber, E. Mandonnet, H. Delingette and N. Ayache,
Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations, IEEE Trans. Med. Imag., 29 (2010), 77-95.
doi: 10.1109/TMI.2009.2026413. |
[17] |
Y. Kuang, J. D. Nagy and S. E. Eikenberry,
Introduction to Mathematical Oncology, Mathematical and Computational Biology Series, Taylor & Francis Group, Boca Raton-London-New York, 2016. |
[18] |
J. S. Lowengrub, H. B. Feiboes, F. Jin, Y.-I. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini,
Nonlinear modelling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), R1-R91.
doi: 10.1088/0951-7715/23/1/R01. |
[19] |
R. H. Martin,
Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York-London-Sydney, 1976. |
[20] |
D. Morgensztern, K. Politi and R. S. Herbst,
EGFR Mutations in non-small-cell lung cancer: Find, divide, and conquer, JAMA Oncol., 1 (2015), 146-148.
|
[21] |
D. P. Naidich, A. A. Bankier, H. MacMahon, C. M. Schaefer-Prokop, M. Pistolesi, J. M. Goo, P. Macchiarini, J. D. Crapo, C. J. Herold, J. H. Austin and W. D. Travis,
Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner Society, Radiology, 266 (2013), 304-317.
doi: 10.1148/radiol.12120628. |
[22] |
National lung screening trial research team, Reduced lung-cancer mortality with low-dose
computed tomographic screening, N. Engl. J. Med., 365 (2011), 395–409. |
[23] |
J. Prüss,
Equilibrium solutions of age-specific population dynamics of several species, J. Math. Biol., 11 (1981), 65-84.
doi: 10.1007/BF00275825. |
[24] |
R. Rockne, E. C. Alvord, Jr., M. Szeto, S. Gu, G. Chakraborty and K. R. Swanson, Modeling
diffusely invading brain tumors: An individualized approach to quantifying glioma evolution
and response to therapy, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune
Competition and Therapy, Modeling and Simulation in Science, Engineering and Technology
Series, Birkh¨auserBoston, Boston, MA, 2008,207–221. |
[25] |
K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord Jr.,
Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003), 1-10.
doi: 10.1016/j.jns.2003.06.001. |
[26] |
C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, K. Jusenius, J. M. Wardlaw, T. Cloughesy, A. M. Spence, R. Rockne, E. C. Alvord Jr. and K. R. Swanson,
Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Can. Res., 69 (2009), 9133-9140.
doi: 10.1158/0008-5472.CAN-08-3863. |
[27] |
A. Y. Yakovlev, A. V. Zorin and B. I. Grudinko,
Computer Simulation in Cell Radiobiology, Lecture Notes in Biomathematics, 74, Springer-Verlag, Berlin-Heidelberg-New York, 1988.
doi: 10.1007/978-3-642-51716-7. |






















Type | Description |
| high peak at low |
| medium peak at low |
| low peak at low |
| low peak at low |
| low peak at low |
Type | Description |
| high peak at low |
| medium peak at low |
| low peak at low |
| low peak at low |
| low peak at low |
fraction | CT scan histogram output at time | model output |
| | |
| between | between |
| | |
fraction | CT scan histogram output at time | model output |
| | |
| between | between |
| | |
Patient | | | Doubling time from baseline |
1 | | | |
2 | | | |
3 | | | |
4 | | | |
Patient | | | Doubling time from baseline |
1 | | | |
2 | | | |
3 | | | |
4 | | | |
[1] |
Ziju Shen, Yufei Wang, Dufan Wu, Xu Yang, Bin Dong. Learning to scan: A deep reinforcement learning approach for personalized scanning in CT imaging. Inverse Problems and Imaging, 2022, 16 (1) : 179-195. doi: 10.3934/ipi.2021045 |
[2] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[3] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[4] |
Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 |
[5] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[6] |
Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 |
[7] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[8] |
Luis Caffarelli, Serena Dipierro, Enrico Valdinoci. A logistic equation with nonlocal interactions. Kinetic and Related Models, 2017, 10 (1) : 141-170. doi: 10.3934/krm.2017006 |
[9] |
Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems and Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016 |
[10] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[11] |
Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931 |
[12] |
Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571 |
[13] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
[14] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[15] |
J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure and Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037 |
[16] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6405-6424. doi: 10.3934/dcdsb.2021025 |
[17] |
Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685 |
[18] |
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 |
[19] |
Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255 |
[20] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
2018 Impact Factor: 1.313
Tools
Article outline
Figures and Tables
[Back to Top]