
-
Previous Article
The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?
- MBE Home
- This Issue
-
Next Article
A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis
Analysis of a mathematical model for brain lactate kinetics
1. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, CHU de Poitiers, 2 Rue de la Milétrie, F-86021 Poitiers, France |
2. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France |
The aim of this article is to study the well-posedness and properties of a fast-slow system which is related with brain lactate kinetics. In particular, we prove the existence and uniqueness of nonnegative solutions and obtain linear stability results. We also give numerical simulations with different values of the small parameter $\varepsilon$ and compare them with experimental data.
References:
[1] |
A. Aubert and R. Costalat,
Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow & Metabolism, 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144. |
[2] |
A. Aubert, R. Costalat, P. Magistretti, J. Pierre and L. Pellerin,
Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 16448-16453.
doi: 10.1073/pnas.0505427102. |
[3] |
M. Cloutier, F. B. Bolger, J. P. Lowry and P. Wellstead,
An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements, Journal of Computational Neuroscience, 27 (2009), 391-414.
doi: 10.1007/s10827-009-0152-8. |
[4] |
R. Costalat, J.-P. Françoise, C. Menuel, M. Lahutte, J.-N. Vallée, G. De Marco, J. Chiras and R. Guillevin,
Mathematical modeling of metabolism and hemodynamics, Acta Biotheoretica, 60 (2012), 99-107.
doi: 10.1007/s10441-012-9157-1. |
[5] |
C. E. Griguer, C. R. Oliva and G. Y. Gillespie,
Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines, Journal of Neuro-oncology, 74 (2005), 123-133.
doi: 10.1007/s11060-004-6404-6. |
[6] |
R. Guillevin, C. Menuel, J.-N. Vallée, J.-P. Françoise, L. Capelle, C. Habas, G. De Marco, J. Chiras and R. Costalat,
Mathematical modeling of energy metabolism and hemodynamics of WHO grade Ⅱ gliomas using in vivo MR data, Comptes rendus biologies, 334 (2011), 31-38.
doi: 10.1016/j.crvi.2010.11.002. |
[7] |
M. Lahutte-Auboin, R. Costalat, J.-P. Françoise, R. Guillevin, Dip and Buffering in a fast-slow system associated to Brain Lactacte Kinetics, preprint, arXiv: 1308.0486. |
[8] |
M. Lahutte-Auboin, R. Guillevin, J.-P. Françoise, J.-N. Vallée and R. Costalat,
On a minimal model for hemodynamics and metabolism of lactate : application to low grade glioma and therapeutic strategies, Acta Biotheoretica, 61 (2013), 79-89.
doi: 10.1007/s10441-013-9174-8. |
[9] |
P. J. Magistretti and I. Allaman,
A cellular perspective on brain energy metabolism and functional imaging, Neuron, 86 (2015), 883-901.
doi: 10.1016/j.neuron.2015.03.035. |
[10] |
S. Mangia, G. Garreffa, M. Bianciardi, F. Giove, F. Di Salle and B. Maraviglia,
The aerobic brain: Lactate decrease at the onset of neural activity, Neuroscience, 118 (2003), 7-10.
doi: 10.1016/S0306-4522(02)00792-3. |
[11] |
J. R. Mangiardi and P. Yodice,
Metabolism of the malignant astrocytoma, Neurosurgery, 26 (1990), 1-19.
|
show all references
References:
[1] |
A. Aubert and R. Costalat,
Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow & Metabolism, 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144. |
[2] |
A. Aubert, R. Costalat, P. Magistretti, J. Pierre and L. Pellerin,
Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 16448-16453.
doi: 10.1073/pnas.0505427102. |
[3] |
M. Cloutier, F. B. Bolger, J. P. Lowry and P. Wellstead,
An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements, Journal of Computational Neuroscience, 27 (2009), 391-414.
doi: 10.1007/s10827-009-0152-8. |
[4] |
R. Costalat, J.-P. Françoise, C. Menuel, M. Lahutte, J.-N. Vallée, G. De Marco, J. Chiras and R. Guillevin,
Mathematical modeling of metabolism and hemodynamics, Acta Biotheoretica, 60 (2012), 99-107.
doi: 10.1007/s10441-012-9157-1. |
[5] |
C. E. Griguer, C. R. Oliva and G. Y. Gillespie,
Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines, Journal of Neuro-oncology, 74 (2005), 123-133.
doi: 10.1007/s11060-004-6404-6. |
[6] |
R. Guillevin, C. Menuel, J.-N. Vallée, J.-P. Françoise, L. Capelle, C. Habas, G. De Marco, J. Chiras and R. Costalat,
Mathematical modeling of energy metabolism and hemodynamics of WHO grade Ⅱ gliomas using in vivo MR data, Comptes rendus biologies, 334 (2011), 31-38.
doi: 10.1016/j.crvi.2010.11.002. |
[7] |
M. Lahutte-Auboin, R. Costalat, J.-P. Françoise, R. Guillevin, Dip and Buffering in a fast-slow system associated to Brain Lactacte Kinetics, preprint, arXiv: 1308.0486. |
[8] |
M. Lahutte-Auboin, R. Guillevin, J.-P. Françoise, J.-N. Vallée and R. Costalat,
On a minimal model for hemodynamics and metabolism of lactate : application to low grade glioma and therapeutic strategies, Acta Biotheoretica, 61 (2013), 79-89.
doi: 10.1007/s10441-013-9174-8. |
[9] |
P. J. Magistretti and I. Allaman,
A cellular perspective on brain energy metabolism and functional imaging, Neuron, 86 (2015), 883-901.
doi: 10.1016/j.neuron.2015.03.035. |
[10] |
S. Mangia, G. Garreffa, M. Bianciardi, F. Giove, F. Di Salle and B. Maraviglia,
The aerobic brain: Lactate decrease at the onset of neural activity, Neuroscience, 118 (2003), 7-10.
doi: 10.1016/S0306-4522(02)00792-3. |
[11] |
J. R. Mangiardi and P. Yodice,
Metabolism of the malignant astrocytoma, Neurosurgery, 26 (1990), 1-19.
|







Parameter | Value | Unit |
| 0.012 | s |
| 0.5 | |
| 50 | |
| 100 | |
| 5.7*10 | |
| 0.001 | |
| 0.002 | |
| 0.001 | |
Parameter | Value | Unit |
| 0.012 | s |
| 0.5 | |
| 50 | |
| 100 | |
| 5.7*10 | |
| 0.001 | |
| 0.002 | |
| 0.001 | |
Parameter | Value | Unit |
| 0.01 | mM.s |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.001 | s |
Parameter | Value | Unit |
| 0.01 | mM.s |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.001 | s |
Parameter | Value | Unit |
| 0.01 | mM.s |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.0057 | mM.s |
| 0.0272 | s |
| 0.1 | s |
Parameter | Value | Unit |
| 0.01 | mM.s |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.0057 | mM.s |
| 0.0272 | s |
| 0.1 | s |
Parameter | Value | Unit |
| 0.1 | mM.d |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.0272 | d |
| 0.1 | d |
Parameter | Value | Unit |
| 0.1 | mM.d |
| 3.5 | mM |
| 3.5 | mM |
| 0.3 | mM |
| 0.0272 | d |
| 0.1 | d |
Patient | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Patient | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
[1] |
Jean-Pierre Françoise, Hongjun Ji. The stability analysis of brain lactate kinetics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2135-2143. doi: 10.3934/dcdss.2020182 |
[2] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[3] |
Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815 |
[4] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[5] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[6] |
Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611 |
[7] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[8] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[9] |
Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072 |
[10] |
Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451 |
[11] |
Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 983-993. doi: 10.3934/dcdss.2021106 |
[12] |
Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123 |
[13] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[14] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[15] |
Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811 |
[16] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[17] |
Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076 |
[18] |
Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184 |
[19] |
Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147 |
[20] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]