\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components

  • * Corresponding author: Yun Kang

    * Corresponding author: Yun Kang
Abstract Full Text(HTML) Figure(5) / Table(1) Related Papers Cited by
  • This paper investigates the complex dynamics of a Harrison-type predator-prey model that incorporating: (1) A constant time delay in the functional response term of the predator growth equation; and (2) environmental noise in both prey and predator equations. We provide the rigorous results of our model including the dynamical behaviors of a positive solution and Hopf bifurcation. We also perform numerical simulations on the effects of delay or/and noise when the corresponding ODE model has an interior solution. Our theoretical and numerical results show that delay can either remain stability or destabilize the model; large noise could destabilize the model; and the combination of delay and noise could intensify the periodic instability of the model. Our results may provide us useful biological insights into population managements for prey-predator interaction models.

    Mathematics Subject Classification: Primary: 34C25, 34F05; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portrait of model (2) and the parameters are taken as $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$. The horizontal axis is prey population $N$ and the vertical axis is predator population $P$. The red dotted curve is the $N$-isoline $cP = (1-N)(mP+1)$ and the yellow solid curve is the $P$-isoline $bN = d(mP+1)$. Both $E_0 = (0, 0)$ and $E_1 = (1, 0)$ are saddle points, $E^* = (0.46, 0.64)$ is locally asymptotically stable

    Figure 2.  The effects of the time delay $\tau$ on the dynamics of the DDE model (4) when $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$ which are the same as in Fig. 1. In the figures of time series, the red curve is the population of $N$ and the blue curve is the population of $P$

    Figure 3.  Time-series plots of model (3) without time-delay and only with different noises $\sigma_1, \, \sigma_2$, and other parametric values are $\tau = 0, \, c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$

    Figure 4.  Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with time delay $\tau = 2.8 < \tau_0 = 3.46$, other parametric values are given as (16)

    Figure 5.  Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with $\tau = 3.9>\tau_0 = 3.46$, other parametric values are given as (16)

    Table 1.  The existence and stability of equilibria for model (2) where $N^* = \frac{b(m-c)+\sqrt{4bcdm+b^2(m-c)^2}}{2bm}, \, P^* = \frac{bN^*-d}{dm}$

    Equilibrium Existence Condition Stability Condition
    $(0, 0)$ Always exists Always saddle
    $(1, 0)$ Always exists Sink if $d\geq b$;
    Saddle if $d < b$
    $(N^*, P^*)$ $d < b$ Always sink
     | Show Table
    DownLoad: CSV
  • [1] J. ArinoL. Wang and G. Wolkowicz, An alternative formulation for a delayed logistic equation, Journal of Theoretical Biology, 241 (2006), 109-119.  doi: 10.1016/j.jtbi.2005.11.007.
    [2] M. BandyopadhyayT. Saha and R. Pal, Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Analysis: Hybrid Systems, 2 (2008), 958-970.  doi: 10.1016/j.nahs.2008.04.001.
    [3] Y. CaiY. KangM. Banerjee and W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 259 (2015), 7463-7502.  doi: 10.1016/j.jde.2015.08.024.
    [4] Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Applied Mathematics and Computation, 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.
    [5] Y. CaiY. KangM. Banerjee and W. Wang, Complex dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Analysis: Real World Applications, 40 (2018), 444-465.  doi: 10.1016/j.nonrwa.2017.10.001.
    [6] Q. HanD. Jiang and C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Applied Mathematical Modelling, 38 (2014), 3067-3080.  doi: 10.1016/j.apm.2013.11.014.
    [7] G. Harrison, Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology, 48 (1986), 137-148.  doi: 10.1007/BF02460019.
    [8] G. Harrison, Comparing predator-prey models to luckinbill's experiment with didinium and paramecium, Ecology, 76 (1995), 357-374.  doi: 10.2307/1941195.
    [9] Y. Jin, Moment stability for a predator-prey model with parametric dichotomous noises, Chinese Physics B, 24 (2015), 060502-7.  doi: 10.1088/1674-1056/24/6/060502.
    [10] Y. Kuang, Delay Differental Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.
    [11] B. Lian, S. Hu and Y. Fen, Stochastic delay Lotka-Volterra model, Journal of Inequalities and Applications, 2011 (2011), Art. ID 914270, 13 pp. doi: 10.1155/2011/914270.
    [12] M. LiuC. Bai and Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete and Continuous Dynamical Systems, 37 (2017), 2513-2538.  doi: 10.3934/dcds.2017108.
    [13] A. MaitiM. Jana and G. Samanta, Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay, Nonlinear Analysis: Modelling and Control, 12 (2007), 383-398. 
    [14] X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.
    [15] X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.
    [16] X. MaoG. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.
    [17] X. MaoC. Yuan and J. Zou, Stochastic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320.  doi: 10.1016/j.jmaa.2004.09.027.
    [18] A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267.  doi: 10.1007/s002850100095.
    [19] R. May, Time-delay versus stability in population models with two and three trophic levels, Ecology, 54 (1973), 315-325.  doi: 10.2307/1934339.
    [20] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 2001.
    [21] J. Murray, Mathematical Biology, 3rd edition, Springer-Verlag, New York, 2003. doi: 10.1007/b98869.
    [22] F. RaoW. Wang and Z. Li, Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons and Fractals, 41 (2009), 1634-1644.  doi: 10.1016/j.chaos.2008.07.005.
    [23] F. Rao and W. Wang, Dynamics of a Michaelis-Menten-type predation model incorporating a prey refuge with noise and external forces, Journal of Statistical Mechanics: Theory and Experiment, 3 (2012), P03014. doi: 10.1088/1742-5468/2012/03/P03014.
    [24] F. RaoC. Castillo-Chavez and Y. Kang, Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components, Journal of Mathematical Analysis and Applications, 461 (2018), 1177-1214.  doi: 10.1016/j.jmaa.2018.01.046.
    [25] T. Saha and M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Applied Mathematics and Computation, 196 (2008), 458-478.  doi: 10.1016/j.amc.2007.06.017.
    [26] G. Samanta, The effects of random fluctuating environment on interacting species with time delay, International Journal of Mathematical Education in Science and Technology, 27 (1996), 13-21.  doi: 10.1080/0020739960270102.
    [27] M. Vasilova, Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay, Mathematical and Computer Modelling, 57 (2013), 764-781.  doi: 10.1016/j.mcm.2012.09.002.
    [28] W. WangY. CaiJ. Li and Z. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, Journal of the Franklin Institute, 354 (2017), 7410-7428.  doi: 10.1016/j.jfranklin.2017.08.034.
    [29] X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion Harrison predator-prey model, Abstract and Applied Analysis, 2013 (2013), Art. ID 306467, 9 pp.
    [30] W. WangY. ZhuY. Cai and W. Wang, Dynamical complexity induced by Allee effect in a predator-prey model, Nonlinear Analysis: Real World Applications, 16 (2014), 103-119.  doi: 10.1016/j.nonrwa.2013.09.010.
    [31] Y. Zhu, Y. Cai, S. Yan and W. Wang, Dynamical analysis of a delayed reaction-diffusion predator-prey system, Abstract and Applied Analysis, 2012 (2012), Art. ID 323186, 23 pp.
  • 加载中
Open Access Under a Creative Commons license

Figures(5)

Tables(1)

SHARE

Article Metrics

HTML views(1982) PDF downloads(405) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return