[1]
|
M. Agarwal and A. S. Bhadauria, Mathematical modeling and analysis of tumor therapy with oncolytic virus, Journal of Applied Mathematics, 2 (2011), 131-140.
doi: 10.4236/am.2011.21015.
|
[2]
|
T. Agrawal, M. Saleem and S. Sahu, Optimal control of the dynamics of a tumor growth model with hollings' type-Ⅱ functional response, Computational and Applied Mathematics, 33 (2014), 591-606.
doi: 10.1007/s40314-013-0083-x.
|
[3]
|
M. Alonso, C. Gomez-Manzano, H. Jiang, N. B. Bekele, Y. Piao, W. K. A. Yung, R. Alemany and J. Fueyo, Combination of the oncolytic adenovirus icovir-5 with chemotherapy provides enhanced anti-glioma effect in vivo, Journal of Cancer Gene Therapy, 14 (2007), 756-761.
doi: 10.1038/sj.cgt.7701067.
|
[4]
|
Z. Bajzer, T. Carr, K. Josic, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, Journal of Theoretical Biology, 252 (2008), 109-122.
doi: 10.1016/j.jtbi.2008.01.016.
|
[5]
|
M. Bartkowski, S. Bridges, P. Came, H. Eggers, P. Fischer, H. Friedmann, M. Green, C. Gurgo, J. Hay, B. D. Korant et al.,
Chemotherapy of viral infections, vol. 61, Springer Science & Business Media, 2012.
|
[6]
|
S. Benzekry, C. Lamont, A. Beheshti, A. Tracz and J. M. L. Ebos, Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput Biol, 10 (2014), e1003800.
doi: 10.1371/journal.pcbi.1003800.
|
[7]
|
M. Bertau, E. Mosekilde and H. V. Westerhoff, Biosimulation in Drug Development, John
Wiley & Sons, 2008.
doi: 10.1002/9783527622672.
|
[8]
|
E. Binz and L. M. Ulrich, Chemovirotherapy: Combining chemotherapeutic treatment with oncolytic virotherapy, Oncolytic Virotherapy, 4 (2015), 39-48.
|
[9]
|
C. Bollard and H. HeslopS, T cells for viral infections after allogeneic hematopoietic stem cell transplant, Blood, 127 (2016), 3331-3340.
doi: 10.1182/blood-2016-01-628982.
|
[10]
|
G. J. Bostol and S. Patil, Carboplatin in clinical stage Ⅰ seminoma: too much and too little at the same time, Journal of Clinical Oncology, 29 (2011), 949-952.
|
[11]
|
T. D. Brock, The Emergence of Bacterial Genetics, Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York, 1990.
|
[12]
|
R. W. Carlson and B. I. Sikic, Continuous infusion or bolus injection in cancer chemotherapy, Annals of Internal Medicine, 99 (1983), 823-833.
doi: 10.7326/0003-4819-99-6-823.
|
[13]
|
J. Crivelli, J. Földes, P. Kim and J. Wares, A mathematical model for cell cycle-specific cancer virotherapy, Journal of Biological Dynamics, 6 (2012), 104-120.
doi: 10.1080/17513758.2011.613486.
|
[14]
|
S. Dasari and P. Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action, European Journal of Pharmacology, 740 (2014), 364-378.
doi: 10.1016/j.ejphar.2014.07.025.
|
[15]
|
R. J. de Boer, Modeling Population Dynamics: A Graphical Approach, Utrecht University, 2018.
|
[16]
|
L. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Mathematical model creation for cancer chemo-immunotherapy, Journal of Computational and Mathematical Methods in Medicine, 10 (2009), 165-184.
doi: 10.1080/17486700802216301.
|
[17]
|
W. Fleming and R. Rishel,
Deterministic and Stochastic Optimal Control, vol. 1, Springer-Verlag, Berlin-New York, 1975.
|
[18]
|
E. Frei III and G. P. Canellos, Dose: a critical factor in cancer chemotherapy, The American Journal of Medicine, 69 (1980), 585-594.
|
[19]
|
T. Gajewski, H. Schreiber and Y. Fu, Innate and adaptive immune cells in the tumor microenvironment, Nature Immunology, 14 (2013), 1014-1022.
doi: 10.1038/ni.2703.
|
[20]
|
K. Garber, China approves world's first oncolytic virus therapy for cancer treatment, Journal of the National Cancer Institute, 98 (2006), 298-300.
doi: 10.1093/jnci/djj111.
|
[21]
|
V. Groh, J. Wu, C. Yee and T. Spies, Tumour-derived soluble MIC ligands impair expression
of nkg2d and t-cell activation, Journal of Nature, 419 (2002), 734-738.
doi: 10.1038/nature01112.
|
[22]
|
A. Howells, G. Marelli, N. Lemoine and Y. Wang, Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer, Frontiers in Oncology, 7 (2017), 195.
doi: 10.3389/fonc.2017.00195.
|
[23]
|
E. Kelly and S. J. Russel, History of oncolytic viruses: Genesis to genetic engineering, Journal of Molecular Therapy, 15 (2007), 651-659.
doi: 10.1038/sj.mt.6300108.
|
[24]
|
S. Khajanchi and S. Banerjee, Stability and bifurcation analysis of delay induced tumor immune interaction model, Applied Mathematics and Computation, 248 (2014), 652-671.
doi: 10.1016/j.amc.2014.10.009.
|
[25]
|
D. Kirschner and J. Panetta, Modeling immunotherapy of the tumor-immune interaction, Journal of Mathematical Biology, 37 (1998), 235-252.
doi: 10.1007/s002850050127.
|
[26]
|
A. Konstorum, A. Vella, A. Adler and R. Laubenbacher, Addressing current challenges in cancer immunotherapy with mathematical and computational modeling, The Royal Society Interface, (2017), 146902.
doi: 10.1101/146902.
|
[27]
|
D. Le, J. Miller and V. Ganusov, Mathematical modeling provides kinetic details of the human immune response to vaccination, Frontiers in Cellular and Infection Microbiology, 7 (2015), 00177.
doi: 10.3389/fcimb.2014.00177.
|
[28]
|
T. C. Liau, E. Galanis and D. Kirn, Clinical trial results with oncolytic virotherapy: A century of promise, a decade of progress, Journal of Nature Clinical Practice Oncology, 4 (2007), 101-117.
doi: 10.1038/ncponc0736.
|
[29]
|
W. Liu and H. I. Freedman, A mathematical model of vascular tumor treatment by chemotherapy, Journal of Mathematical and Computer Modelling, 42 (2005), 1089-1112.
doi: 10.1016/j.mcm.2004.09.008.
|
[30]
|
J. Malinzi, A. Eladdadi and P. Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, Journal of Biological Dynamics, 11 (2017), 244-274.
doi: 10.1080/17513758.2017.1328079.
|
[31]
|
J. Malinzi, P. Sibanda and H. Mambili-Mamoboundou, Analysis of virotherapy in solid tumor
invasion, Journal of Mathematical Biosciences, 263 (2015), 102-110.
doi: 10.1016/j.mbs.2015.01.015.
|
[32]
|
S. Nayar, P. Dasgupta and C. Galustian, Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-a review, Oncoimmunology, 4 (2015), e1002720.
doi: 10.1080/2162402X.2014.1002720.
|
[33]
|
A. Nguyen, L. Ho and Y. Wan, Chemotherapy and oncolytic virotherapy: Advanced tactics in the war against cancer, Frontiers in Oncology, 4 (2014), 00145.
doi: 10.3389/fonc.2014.00145.
|
[34]
|
A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18.
|
[35]
|
R. T. D. Oliver, G. M. Mead, G. J. Rustin, J. S. Gordon, J. K. Joffe, N. Aass, R. Coleman, P. P. R. Gabe and S. P. Stenning, Randomized trial of carboplatin versus radiotherapy for stage Ⅰ seminoma: mature results on relapse and contralateral testis cancer rates in MRC TE19/EORTC 30982 study (ISRCTN27163214), Journal of Clinical Oncology, 29 (2011), 957-962.
doi: 10.1200/JCO.2009.26.4655.
|
[36]
|
P. K. Ottolino, J. S. Diallo, B. D. Lichty, J. C. Bell and J. A. McCart, Intelligent design: combination therapy with oncolytic viruses, Journal of Molecular Therapy, 18 (2010), 251-263.
doi: 10.1038/mt.2009.283.
|
[37]
|
R. Ouifki and G. Witten, A model of HIV-1 infection with HAART therapy and intracellular delays, Discrete and Continous Dynamical Systems Series B, 8 (2007), 229-240.
doi: 10.3934/dcdsb.2007.8.229.
|
[38]
|
S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment
of cancer with metastasis, Journal of Mathematical and Computer Modelling, 36 (2002), 773-803.
doi: 10.1016/S0895-7177(02)00227-3.
|
[39]
|
S. T. R. Pinho, D. S. Rodrigues and P. F. A. Mancera, A mathematical model of chemotherapy response to tumour growth, Canadian Applied Math Quarterly, 19 (2011), 369-384.
|
[40]
|
S. Pinho, R. A. F. S. Bacelar and H. Freedman, A mathematical model for the effect of antiangiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlinear Analysis: Real World Applications, 14 (2013), 815-828.
doi: 10.1016/j.nonrwa.2012.07.034.
|
[41]
|
L. Pontryagin, Mathematical Theory of Optimal Processes, CRC Press, 1987.
doi: 10.1201/9780203749319.
|
[42]
|
K. Relph, H. Pandha, G. Simpson, A. Melcher and K. Harrington, Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances, Oncolytic Virotherapy, 2016 (2016), 1-13.
|
[43]
|
S. J. Russel, K. W. Pengl and J. C. Bell, Oncolytic virotherapy, Journal of Nature Biotechnology, 30 (2012), 658-670.
doi: 10.1038/nbt.2287.
|
[44]
|
B. J. Schroers, Ordinary Differential Equations: A Practical Guide, Cambridge University Press, 2011.
doi: 10.1017/CBO9781139057707.
|
[45]
|
J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human solid neoplasms: Part i, Journal of Surgical Oncology, 60 (1995), 137-146.
doi: 10.1002/jso.2930600216.
|
[46]
|
H. Thieme, Mathematics in Population Biology, Princeton University Press, 2003.
|
[47]
|
J. P. Tian, The replicability of oncolytic virus: defining conditions in tumor virotherapy, Journal of Mathematical Biosciences and Engineering, 8 (2011), 841-860.
doi: 10.3934/mbe.2011.8.841.
|
[48]
|
S. D. Undevia, A. G. Gomez and M. J. Ratain, Pharmacokinetic variability of anticancer agents, Nature Reviews Cancer, 5 (2005), 447-458.
doi: 10.1038/nrc1629.
|
[49]
|
G. Ungerechts, M. E. Frenzke, K. C. Yaiw, T. Miest, P. B. Johnston and R. Cattaneo, Mantle
cell lymphoma salvage regimen: Synergy between a reprogrammed oncolytic virus and two
chemotherapeutics, Gene Therapy, 17 (2010), 1506-1516.
doi: 10.1038/gt.2010.103.
|
[50]
|
J. R. Usher, Some mathematical models for cancer chemotherapy, Journal of Computers & Mathematics with Applications, 28 (1994), 73-80.
|
[51]
|
US Food and Drug Administration and others, FDA approves first-of-its-kind product for the treatment of melanoma. press release. october 27, 2015.
|
[52]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[53]
|
Y. Wang, J. P. Tian and J. Wei, Lytic cycle: A defining process in oncolytic virotherapy, Journal of Applied Mathematical Modelling, 37 (2013), 5962-5978.
doi: 10.1016/j.apm.2012.12.004.
|
[54]
|
D. Wodarz, Viruses as antitumor weapons defining conditions for tumor remission, Journal of Cancer Research, 61 (2001), 3501-3507.
|
[55]
|
M. Yoshimori, H. Ookura, Y. Shimada, T. Yoshida, N. Okazaki, M. Yoshino and D. Saito, continuous infusion of anti-cancer drug with balloon infusors, Gan to Kagaku Ryoho. Cancer & Chemotherapy, 15 (1988), 3121-3125.
|