This paper is concerned with a strongly-coupled elliptic system, which describes a West Nile virus (WNv) model with cross-diffusion in a heterogeneous environment. The basic reproduction number is introduced through the next generation infection operator and some related eigenvalue problems. The existence of coexistence states is presented by using a method of upper and lower solutions. The true positive solutions are obtained by monotone iterative schemes. Our results show that a cross-diffusive WNv model possesses at least one coexistence solution if the basic reproduction number is greater than one and the cross-diffusion rates are small enough, while if the basic reproduction number is less than or equal to one, the model has no positive solution. To illustrate the impact of cross-diffusion and environmental heterogeneity on the transmission of WNv, some numerical simulations are given.
Citation: |
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1.![]() ![]() ![]() |
[2] |
P. ![]() ![]() ![]() |
[3] |
D. S. Asnis, R. Conetta, A. A. Teixeira, G. Waldman and B. A. Sampson, The West Nile virus outbreak of 1999 in New York: The flushing hospital experience, Clinical Infect Dis., 30 (2000), 413-418.
doi: 10.1086/313737.![]() ![]() |
[4] |
K. W. Blaynech, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72 (2010), 1006-1028.
doi: 10.1007/s11538-009-9480-0.![]() ![]() ![]() |
[5] |
E. Braverman and Md. Kamrujjaman, Competitive-cooperative models with various diffusion strategies, Comput. Math. Appl., 72 (2016), 653-662.
doi: 10.1016/j.camwa.2016.05.017.![]() ![]() ![]() |
[6] |
B. Chen and R. Peng, Coexistence states of a strongly coupled prey-predator model, J. Partial Diff. Eqs., 18 (2005), 154-166.
![]() ![]() |
[7] |
V. Chevalier, A. Tran and B. Durand, Predictive modeling of west nile virus transmission risk in the mediterranean basin, Int. J. Environ. Res. Public Health, 11 (2014), 67-90.
doi: 10.3390/ijerph110100067.![]() ![]() |
[8] |
G. Cruz-Pacheco, L. Esteva and C. Vargas, Seasonality and outbreaks in west nile virus infection, Bull. Math. Biol., 71 (2009), 1378-1393.
doi: 10.1007/s11538-009-9406-x.![]() ![]() ![]() |
[9] |
D. G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17 (1986), 836-849.
doi: 10.1137/0517060.![]() ![]() ![]() |
[10] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
![]() ![]() |
[11] |
S. Fu, L. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Anal. Real World Appl., 14 (2013), 2027-2045.
doi: 10.1016/j.nonrwa.2013.02.007.![]() ![]() ![]() |
[12] |
W. Gan and Z. Lin, Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model, J. Math. Anal. Appl., 337 (2008), 1089-1099.
doi: 10.1016/j.jmaa.2007.04.022.![]() ![]() ![]() |
[13] |
D. Horstmann, Remarks on some Lotka-Volterra type cross-diffusion models, Nonlinear Anal. Real World Appl., 8 (2007), 90-117.
doi: 10.1016/j.nonrwa.2005.05.008.![]() ![]() ![]() |
[14] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive iteraction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2.![]() ![]() ![]() |
[15] |
D. J. Jamieson, J. E. Ellis, D. B. Jernigan and T. A. Treadwell, Emerging infectious disease outbreaks: Old lessons and new challenges for obstetrician-gynecologists, Am. J. Obstet. Gynecol., 194 (2006), 1546-1555.
doi: 10.1016/j.ajog.2005.06.062.![]() ![]() |
[16] |
Y. Jia, J. Wu and H. Xu, Positive solutions of Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014), 1220-1228.
doi: 10.1016/j.camwa.2014.08.016.![]() ![]() ![]() |
[17] |
A. J![]() ![]() ![]() |
[18] |
K. I. Kim and Z. G. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonlinear Anal., 55 (2003), 313-333.
doi: 10.1016/S0362-546X(03)00242-6.![]() ![]() ![]() |
[19] |
W. Ko and K. Ryu, On a predator-prey system with cross-diffusion representing the tendency of prey to keep away from its predators, Appl. Math. Lett., 21 (2008), 1177-1183.
doi: 10.1016/j.aml.2007.12.018.![]() ![]() ![]() |
[20] |
K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.
doi: 10.1016/j.jde.2003.08.003.![]() ![]() ![]() |
[21] |
M. Lewis, J. Renclawowicz and P. Driessche, Travalling waves and spread rates for a west nile virus model, Bull. Math. Biol., 68 (2006), 3-23.
doi: 10.1007/s11538-005-9018-z.![]() ![]() ![]() |
[22] |
S. Li, J. Wu and S. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone,
Calc. Var. Partial Differential Equations, 56 (2017), Art. 82, 35 pp.
doi: 10.1007/s00526-017-1159-z.![]() ![]() ![]() |
[23] |
Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.
doi: 10.1007/s00285-017-1124-7.![]() ![]() ![]() |
[24] |
Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Sys A, 4 (1998), 193-203.
doi: 10.3934/dcds.1998.4.193.![]() ![]() ![]() |
[25] |
Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.
doi: 10.3934/dcds.2004.10.435.![]() ![]() ![]() |
[26] |
D. Nash, F. Mostashari and A. Fine, etc., The Outbreak of West Nile Virus Infection in New
York city area in 1999, N. Engl. Med., 344 (2001), 1807-1814.
doi: 10.1056/NEJM200106143442401.![]() ![]() |
[27] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() ![]() |
[28] |
C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 60 (2005), 1197-1217.
doi: 10.1016/j.na.2004.10.008.![]() ![]() ![]() |
[29] |
K. A. Rahman, R. Sudarsan and H. J. Eberl, A mixed-culture biofilm model with cross-diffusion, Bull. Math. Biol., 77 (2015), 2086-2124.
doi: 10.1007/s11538-015-0117-1.![]() ![]() ![]() |
[30] |
K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.
doi: 10.3934/dcds.2003.9.1049.![]() ![]() ![]() |
[31] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3.![]() ![]() ![]() |
[32] |
S. Shim, Long time properties of prey-predator system with cross diffusion, Comm. Korean Math. Soc., 21 (2006), 293-320.
doi: 10.4134/CKMS.2006.21.2.293.![]() ![]() ![]() |
[33] |
G. Sweers, Strong positivity in $C(\overline Ω)$ for elliptic systems, Math. Z., 209 (1992), 251-271.
doi: 10.1007/BF02570833.![]() ![]() ![]() |
[34] |
A. K. Tarboush, Z. G. Lin and M. Y. Zhang, Spreading and vanishing in a West Nile virus model with expanding fronts, Sci. China Math., 60 (2017), 841-860.
doi: 10.1007/s11425-016-0367-4.![]() ![]() ![]() |
[35] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.![]() ![]() ![]() |
[36] |
H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 272 (2010), 20-28.
doi: 10.1016/j.mbs.2010.05.006.![]() ![]() ![]() |
[37] |
W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.![]() ![]() ![]() |
[38] |
Z. Wen and S. Fu, Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos Solitons Fractals, 91 (2016), 379-385.
doi: 10.1016/j.chaos.2016.06.019.![]() ![]() ![]() |
[39] |
M. J. Wonham, T. C. Beck and M. A. Lewis, An epidemiology model for West Nile virus: Invansion analysis and control applications, Proc. R. Soc. Lond B, 271 (2004), 501-507.
![]() |
[40] |
Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.
doi: 10.1016/j.jde.2004.08.015.![]() ![]() ![]() |
[41] |
X. Q. Zhao,
Dynamical Systems in Population Biology, Second edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e} $matiques de la SMC. Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.![]() ![]() ![]() |
[42] |
H. Zhou and Z. G. Lin, Coexistence in a stroungly coupled system describing a two-species cooperative model, Appl. Math. Lett., 20 (2007), 1126-1130.
doi: 10.1016/j.aml.2006.11.012.![]() ![]() ![]() |