March  2011, 1(1): 119-127. doi: 10.3934/mcrf.2011.1.119

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

2. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

3. 

College of Economics, Sichuan Normal University, Chengdu 610066, China

Received  October 2010 Revised  January 2011 Published  March 2011

We consider the blow-up solutions of the Cauchy problem for the critical nonlinear Schrödinger equation with a repulsive harmonic potential. In terms of Merle and Tsutsumi's arguments as well as Carles' transform, the $L^2$-concentration property of radially symmetric blow-up solutions is obtained.
Citation: Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119
References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843. doi: 10.1137/S0036141002416936.

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523. doi: 10.1142/S0218202502002215.

[3]

T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003.

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834. doi: 10.1103/PhysRevA.38.3837.

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42.

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771.

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222. doi: 10.4007/annals.2005.161.157.

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90. doi: 10.1090/S0894-0347-05-00499-6.

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672. doi: 10.1007/s00222-003-0346-z.

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704. doi: 10.1007/s00220-004-1198-0.

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214. doi: 10.1016/0022-0396(90)90075-Z.

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X.

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609. doi: 10.1007/s00208-004-0596-0.

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724. doi: 10.1016/0362-546X(90)90088-X.

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293. doi: 10.1016/S0375-9601(98)00583-0.

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576. doi: 10.1007/BF01208265.

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987.

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443. doi: 10.1080/03605300500299539.

show all references

References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843. doi: 10.1137/S0036141002416936.

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523. doi: 10.1142/S0218202502002215.

[3]

T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003.

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834. doi: 10.1103/PhysRevA.38.3837.

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42.

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771.

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222. doi: 10.4007/annals.2005.161.157.

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90. doi: 10.1090/S0894-0347-05-00499-6.

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672. doi: 10.1007/s00222-003-0346-z.

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704. doi: 10.1007/s00220-004-1198-0.

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214. doi: 10.1016/0022-0396(90)90075-Z.

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X.

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609. doi: 10.1007/s00208-004-0596-0.

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724. doi: 10.1016/0362-546X(90)90088-X.

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293. doi: 10.1016/S0375-9601(98)00583-0.

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576. doi: 10.1007/BF01208265.

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987.

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443. doi: 10.1080/03605300500299539.

[1]

Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022111

[2]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[7]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[8]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[9]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[10]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[11]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[12]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[13]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[14]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[15]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[16]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[17]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[18]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[19]

Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]