-
Previous Article
Global Carleman inequalities for Stokes and penalized Stokes equations
- MCRF Home
- This Issue
- Next Article
Control of a network of magnetic ellipsoidal samples
1. | Indian Institute of Technology Madras, Department of Mathematics, Chennai - 600 036, India |
2. | IMB, Université Bordeaux, 351 cours la Libération, 33405 Talence, France |
3. | Laboratoire Jean Kuntzmann, Université de Grenoble, Tour IRMA, 51 rue des Mathématiques, BP 53, 38041 Grenoble Cedex 9, France |
4. | Department of Automatic Control, Gipsa-lab, 961 rue de la Houille Blanche, BP 46, 38402 Grenoble Cedex, France |
References:
[1] |
François Alouges and Karine Beauchard, Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var., 15 (2009), 676-711.
doi: 10.1051/cocv:2008047. |
[2] |
François Alouges and Alain Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.
doi: 10.1016/0362-546X(92)90196-L. |
[3] |
S. W. Anwane, "Fundamentals of Electromagnetic Fields," Infinity Science Press, Hingham, Masschusetts, 2007. |
[4] |
L'ubomír Baňas, Sören Bartels and Andreas Prohl, A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 46 (2008), 1399-1422.
doi: 10.1137/070683064. |
[5] | |
[6] |
Gilles Carbou, Stability of static walls for a three-dimensional model of ferromagnetic material, J. Math. Pures Appl., 93 (2010), 183-203.
doi: 10.1016/j.matpur.2009.10.004. |
[7] |
Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differential Integral Equations, 14 (2001), 213-229. |
[8] |
Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in $\R^3$, Commun. Appl. Anal., 5 (2001), 17-30. |
[9] |
Gilles Carbou, Stéphane Labbé and Emmanuel Trélat, Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst., 1 (2008), 51-59. |
[10] |
Shijin Ding, Boling Guo, Junyu Lin and Ming Zeng, Global existence of weak solutions for Landau-Lifshitz-Maxwell equations, Discrete Contin. Dyn. Syst., 17 (2007), 867-890.
doi: 10.3934/dcds.2007.17.867. |
[11] |
Boling Guo and Fengqiu Su, Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions, J. Math. Anal. Appl., 211 (1997), 326-346.
doi: 10.1006/jmaa.1997.5467. |
[12] |
D. J. Griffiths, "Introduction to Electrodynamics," 3rd edition, PearsonBenjamin Cummings, San Francisco, CA, 2008. |
[13] |
Stéphane Labbé, "Simulation Numérique du Comportement Hyperfréquence des Matériaux Ferromagnétiques," Editions Universitaires Européennes, 2010. |
[14] |
Stéphane Labbé, Fast computation for large magnetostatic systems adapted for micromagnetism, SIAM J. Sci. Comp., 26 (2005), 2160-2175.
doi: 10.1137/030601053. |
[15] |
Stéphane Labbé and Pierre-Yves Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization, Journal of Magnetism and Magnetic Materials, 206 (1999), 93-105.
doi: 10.1016/S0304-8853(99)00537-5. |
[16] |
L. Landau and E. Lifschitz, "Electrodynamique des Milieux Continus, Cours de Physique Théorique," (French) [Electrodynamic of Continuous Media, Theoretical Physics Course], VIII, Mir, Moscou, 1969. |
[17] |
J. A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev., 67 (1945), 351-357.
doi: 10.1103/PhysRev.67.351. |
[18] |
Augusto Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, 1 (1985), 69-84.
doi: 10.1007/BF03167039. |
show all references
References:
[1] |
François Alouges and Karine Beauchard, Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var., 15 (2009), 676-711.
doi: 10.1051/cocv:2008047. |
[2] |
François Alouges and Alain Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.
doi: 10.1016/0362-546X(92)90196-L. |
[3] |
S. W. Anwane, "Fundamentals of Electromagnetic Fields," Infinity Science Press, Hingham, Masschusetts, 2007. |
[4] |
L'ubomír Baňas, Sören Bartels and Andreas Prohl, A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 46 (2008), 1399-1422.
doi: 10.1137/070683064. |
[5] | |
[6] |
Gilles Carbou, Stability of static walls for a three-dimensional model of ferromagnetic material, J. Math. Pures Appl., 93 (2010), 183-203.
doi: 10.1016/j.matpur.2009.10.004. |
[7] |
Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain, Differential Integral Equations, 14 (2001), 213-229. |
[8] |
Gilles Carbou and Pierre Fabrie, Regular solutions for Landau-Lifschitz equation in $\R^3$, Commun. Appl. Anal., 5 (2001), 17-30. |
[9] |
Gilles Carbou, Stéphane Labbé and Emmanuel Trélat, Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst., 1 (2008), 51-59. |
[10] |
Shijin Ding, Boling Guo, Junyu Lin and Ming Zeng, Global existence of weak solutions for Landau-Lifshitz-Maxwell equations, Discrete Contin. Dyn. Syst., 17 (2007), 867-890.
doi: 10.3934/dcds.2007.17.867. |
[11] |
Boling Guo and Fengqiu Su, Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions, J. Math. Anal. Appl., 211 (1997), 326-346.
doi: 10.1006/jmaa.1997.5467. |
[12] |
D. J. Griffiths, "Introduction to Electrodynamics," 3rd edition, PearsonBenjamin Cummings, San Francisco, CA, 2008. |
[13] |
Stéphane Labbé, "Simulation Numérique du Comportement Hyperfréquence des Matériaux Ferromagnétiques," Editions Universitaires Européennes, 2010. |
[14] |
Stéphane Labbé, Fast computation for large magnetostatic systems adapted for micromagnetism, SIAM J. Sci. Comp., 26 (2005), 2160-2175.
doi: 10.1137/030601053. |
[15] |
Stéphane Labbé and Pierre-Yves Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization, Journal of Magnetism and Magnetic Materials, 206 (1999), 93-105.
doi: 10.1016/S0304-8853(99)00537-5. |
[16] |
L. Landau and E. Lifschitz, "Electrodynamique des Milieux Continus, Cours de Physique Théorique," (French) [Electrodynamic of Continuous Media, Theoretical Physics Course], VIII, Mir, Moscou, 1969. |
[17] |
J. A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev., 67 (1945), 351-357.
doi: 10.1103/PhysRev.67.351. |
[18] |
Augusto Visintin, On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, 1 (1985), 69-84.
doi: 10.1007/BF03167039. |
[1] |
Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138 |
[2] |
Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Control of travelling walls in a ferromagnetic nanowire. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 51-59. doi: 10.3934/dcdss.2008.1.51 |
[3] |
Thierry Goudon, Frédéric Lagoutière, Léon M. Tine. The Lifschitz-Slyozov equation with space-diffusion of monomers. Kinetic and Related Models, 2012, 5 (2) : 325-355. doi: 10.3934/krm.2012.5.325 |
[4] |
Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022001 |
[5] |
Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333 |
[6] |
Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014 |
[7] |
D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527 |
[8] |
Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415 |
[9] |
Gilles Carbou, Stéphane Labbé. Stability for static walls in ferromagnetic nanowires. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 273-290. doi: 10.3934/dcdsb.2006.6.273 |
[10] |
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895 |
[11] |
Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010 |
[12] |
François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1259-1282. doi: 10.3934/dcds.2010.27.1259 |
[13] |
Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553 |
[14] |
Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1 |
[15] |
Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033 |
[16] |
Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic and Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715 |
[17] |
N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 |
[18] |
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 |
[19] |
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 |
[20] |
Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]