June  2011, 1(2): 177-187. doi: 10.3934/mcrf.2011.1.177

Observability of heat processes by transmutation without geometric restrictions

1. 

CNRS, Institut de Mathématiques de Toulouse, UMR 5219, F-31062 Toulouse, France

2. 

Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, E-48160 Derio - Basque Country, Spain

Received  December 2010 Revised  March 2011 Published  June 2011

The goal of this note is to explain how transmutation techniques (originally introduced in [14] in the context of the control of the heat equation, inspired on the classical Kannai transform, and recently revisited in [4] and adapted to deal with observability problems) can be applied to derive observability results for the heat equation without any geometric restriction on the subset in which the control is being applied, from a good understanding of the wave equation. Our arguments are based on the recent results in [15] on the frequency depending observability inequalities for waves without geometric restrictions, an iteration argument recently developed in [13] and the new representation formulas in [4] allowing to make a link between heat and wave trajectories.
Citation: Sylvain Ervedoza, Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Mathematical Control and Related Fields, 2011, 1 (2) : 177-187. doi: 10.3934/mcrf.2011.1.177
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332. doi: 10.1016/j.jde.2004.12.010.

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, (French) [A necessary and sufficient condition for the exact controllability of the wave equation], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752. doi: 10.1016/S0764-4442(97)80053-5.

[4]

S. Ervedoza and E. Zuazua, "Sharp Observability Estimates for the Heat Equation," preprint, 2011.

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[6]

L. Hörmander, "Linear Partial Differential Operators," Springer Verlag, Berlin-New York, 1976.

[7]

G. Lebeau, Contrôle analytique. I. Estimations a priori, (French) [Analytic control. I. A priori estimates], Duke Math. J., 68 (1992), 1-30. doi: 10.1215/S0012-7094-92-06801-3.

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary], Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[11]

W. Li and X. Zhang, Controllability of parabolic and hyperbolic equations: Toward a unified theory, in "Control Theory of Partial Differential Equations," Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Raton, FL, (2005), 157-174.

[12]

J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1," (French) [Exact Controllability, Perturbations and Stabilization of Distributed Systems.Vol. 1], Contrôlabilité Exacte, [Exact Controllability], RMA, 8, Masson, Paris, 1988.

[13]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465.

[14]

L. Miller, The control transmutation method and the cost of fast controls, SIAM J. Control Optim., 45 (2006), 762-772 (electronic). doi: 10.1137/S0363012904440654.

[15]

K. D. Phung, Waves, damped wave and observation, in "Some Problems on Nonlinear Hyperbolic Equations and Applications" (eds. Ta-Tsien Li, Yue-Jun Peng and Bo-Peng Rao), Series in Contemporary Applied Mathematics CAM 15, 2010.

[16]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, (French) [Uniqueness theorem adapted to the control of the solutions of hyperbolic problems], in "Équations aux Dérivées Partielles," École Polytech., Palaiseau, 1991.

[17]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, (French) [Cost function and control of solutions of hyperbolic equations], Asymptotic Anal., 10 (1995), 95-115.

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[19]

X. Zhang, A remark on null exact controllability of the heat equation, SIAM J. Control Optim., 40 (2001), 39-53 (electronic). doi: 10.1137/S0363012900371691.

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332. doi: 10.1016/j.jde.2004.12.010.

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, (French) [A necessary and sufficient condition for the exact controllability of the wave equation], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752. doi: 10.1016/S0764-4442(97)80053-5.

[4]

S. Ervedoza and E. Zuazua, "Sharp Observability Estimates for the Heat Equation," preprint, 2011.

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[6]

L. Hörmander, "Linear Partial Differential Operators," Springer Verlag, Berlin-New York, 1976.

[7]

G. Lebeau, Contrôle analytique. I. Estimations a priori, (French) [Analytic control. I. A priori estimates], Duke Math. J., 68 (1992), 1-30. doi: 10.1215/S0012-7094-92-06801-3.

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary], Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[11]

W. Li and X. Zhang, Controllability of parabolic and hyperbolic equations: Toward a unified theory, in "Control Theory of Partial Differential Equations," Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Raton, FL, (2005), 157-174.

[12]

J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1," (French) [Exact Controllability, Perturbations and Stabilization of Distributed Systems.Vol. 1], Contrôlabilité Exacte, [Exact Controllability], RMA, 8, Masson, Paris, 1988.

[13]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465.

[14]

L. Miller, The control transmutation method and the cost of fast controls, SIAM J. Control Optim., 45 (2006), 762-772 (electronic). doi: 10.1137/S0363012904440654.

[15]

K. D. Phung, Waves, damped wave and observation, in "Some Problems on Nonlinear Hyperbolic Equations and Applications" (eds. Ta-Tsien Li, Yue-Jun Peng and Bo-Peng Rao), Series in Contemporary Applied Mathematics CAM 15, 2010.

[16]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, (French) [Uniqueness theorem adapted to the control of the solutions of hyperbolic problems], in "Équations aux Dérivées Partielles," École Polytech., Palaiseau, 1991.

[17]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, (French) [Cost function and control of solutions of hyperbolic equations], Asymptotic Anal., 10 (1995), 95-115.

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[19]

X. Zhang, A remark on null exact controllability of the heat equation, SIAM J. Control Optim., 40 (2001), 39-53 (electronic). doi: 10.1137/S0363012900371691.

[1]

Luc Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1465-1485. doi: 10.3934/dcdsb.2010.14.1465

[2]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[3]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[4]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[5]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[6]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[7]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems and Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[8]

Chulan Zeng. Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 749-783. doi: 10.3934/cpaa.2021197

[9]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations and Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[10]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[11]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[12]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[13]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[14]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[15]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027

[16]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[17]

Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133

[18]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]