March  2011, 1(1): 21-40. doi: 10.3934/mcrf.2011.1.21

Numerical methods for dividend optimization using regime-switching jump-diffusion models

1. 

Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States, United States

2. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

Received  August 2010 Revised  October 2010 Published  March 2011

This work develops numerical methods for finding optimal dividend policies to maximize the expected present value of dividend payout, where the surplus follows a regime-switching jump diffusion model and the switching is represented by a continuous-time Markov chain. To approximate the optimal dividend policies or optimal controls, we use Markov chain approximation techniques to construct a discrete-time controlled Markov chain with two components. Under simple conditions, we prove the convergence of the approximation sequence to the surplus process and the convergence of the approximation to the value function. Several examples are provided to demonstrate the performance of the algorithms.
Citation: Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21
References:
[1]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Math. and Economics, 20 (1997), 1-15. doi: 10.1016/S0167-6687(96)00017-0.

[2]

S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, DFinance and Stochastics, 4 (2000), 299-324. doi: 10.1007/s007800050075.

[3]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202. doi: 10.1111/j.1467-9965.2006.00267.x.

[4]

P. Chen, H. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: a continuous-time model, Insurance: Math. Economics, 43 (2008), 456-465. doi: 10.1016/j.insmatheco.2008.09.001.

[5]

B. De Finetti, Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.

[6]

R. J. Elliott and T. K. Siu, Robust optimal portfolio choice under Markovian regime-switching model, Methodology and Computing in Applied Probability, 11 (2009), 145-157. doi: 10.1007/s11009-008-9085-3.

[7]

H. Gerber, Games of economic survival with discrete- and continuous-income processes, Operations Res., 20 (1972), 37-45. doi: 10.1287/opre.20.1.37.

[8]

H. Gerber, "An Introduction to Mathematical Risk Theory," in "Huebner Foundation Monograph 8" Distributed by Richard D. Irwin, Homewood, IL, 1979.

[9]

H. Gerber and E. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20.

[10]

H. Gerber and E. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.

[11]

Z. Jiang and M. Pistorius, Optimal dividend distribution under Markov regime switching, Working paper, (2008). arXiv:0812.4978

[12]

H. J. Kushner and P. Dupuis, "Numerical Methods for Stochastic Control Problems in Continuous Time," 2nd edition, Springer, New York, 2001.

[13]

C. F. Lee and S. W. Forbes, Dividend policy, Equity value, and cost of capital estimates in the property and liability insurance industry, J. Risk Insurance, 47 (1980), 205-222. doi: 10.2307/252328.

[14]

H. Schmidli, "Stochastic Control in Insurance," Springer Verlag, 2008.

[15]

Q. S. Song, G. Yin and Z. Zhang, Numerical method for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica, 42 (2006), 1147-1157. doi: 10.1016/j.automatica.2006.03.016.

[16]

L. Sotomayor and A. Cadenillas, Classical, singular, and impulse stochastic control for the optimal dividend policy when there is regime switching, Preprint, (2008), Download at http://papers.ssrn.com/sol3/papers.cfm?abstract-id=1139444.

[17]

J. Wei, H. Yang and R. Wang, Optimal reinsurance and dividend strategies under the Markov-Modulated insurance risk model, Stochastic Analysis and Applications, 28 (2010), 1078-1105. doi: 10.1080/07362994.2010.515488.

[18]

J. Wei, H. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377. doi: 10.1007/s10957-010-9726-x.

[19]

G. Yin, Q. Zhang and G. Badowski, Discrete-time singularly perturbed Markov chains: Aggregation, occupation measures, and switching diffusion limit, Adv. Appl. Probab., 35 (2003), 449-476. doi: 10.1239/aap/1051201656.

[20]

G. Yin and C. Zhu, "Hybrid Switching Diffusions: Properties and Applications," Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[21]

Q. Zhang, Stock trading: An optimal selling rule, SIAM J. Control Optim., 40 (2001), 64-87. doi: 10.1137/S0363012999356325.

[22]

X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: A continuous-time model, SIAM J. Control Optim., 42 (2003), 1466-1482. doi: 10.1137/S0363012902405583.

show all references

References:
[1]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Math. and Economics, 20 (1997), 1-15. doi: 10.1016/S0167-6687(96)00017-0.

[2]

S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, DFinance and Stochastics, 4 (2000), 299-324. doi: 10.1007/s007800050075.

[3]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202. doi: 10.1111/j.1467-9965.2006.00267.x.

[4]

P. Chen, H. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: a continuous-time model, Insurance: Math. Economics, 43 (2008), 456-465. doi: 10.1016/j.insmatheco.2008.09.001.

[5]

B. De Finetti, Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.

[6]

R. J. Elliott and T. K. Siu, Robust optimal portfolio choice under Markovian regime-switching model, Methodology and Computing in Applied Probability, 11 (2009), 145-157. doi: 10.1007/s11009-008-9085-3.

[7]

H. Gerber, Games of economic survival with discrete- and continuous-income processes, Operations Res., 20 (1972), 37-45. doi: 10.1287/opre.20.1.37.

[8]

H. Gerber, "An Introduction to Mathematical Risk Theory," in "Huebner Foundation Monograph 8" Distributed by Richard D. Irwin, Homewood, IL, 1979.

[9]

H. Gerber and E. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20.

[10]

H. Gerber and E. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.

[11]

Z. Jiang and M. Pistorius, Optimal dividend distribution under Markov regime switching, Working paper, (2008). arXiv:0812.4978

[12]

H. J. Kushner and P. Dupuis, "Numerical Methods for Stochastic Control Problems in Continuous Time," 2nd edition, Springer, New York, 2001.

[13]

C. F. Lee and S. W. Forbes, Dividend policy, Equity value, and cost of capital estimates in the property and liability insurance industry, J. Risk Insurance, 47 (1980), 205-222. doi: 10.2307/252328.

[14]

H. Schmidli, "Stochastic Control in Insurance," Springer Verlag, 2008.

[15]

Q. S. Song, G. Yin and Z. Zhang, Numerical method for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica, 42 (2006), 1147-1157. doi: 10.1016/j.automatica.2006.03.016.

[16]

L. Sotomayor and A. Cadenillas, Classical, singular, and impulse stochastic control for the optimal dividend policy when there is regime switching, Preprint, (2008), Download at http://papers.ssrn.com/sol3/papers.cfm?abstract-id=1139444.

[17]

J. Wei, H. Yang and R. Wang, Optimal reinsurance and dividend strategies under the Markov-Modulated insurance risk model, Stochastic Analysis and Applications, 28 (2010), 1078-1105. doi: 10.1080/07362994.2010.515488.

[18]

J. Wei, H. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377. doi: 10.1007/s10957-010-9726-x.

[19]

G. Yin, Q. Zhang and G. Badowski, Discrete-time singularly perturbed Markov chains: Aggregation, occupation measures, and switching diffusion limit, Adv. Appl. Probab., 35 (2003), 449-476. doi: 10.1239/aap/1051201656.

[20]

G. Yin and C. Zhu, "Hybrid Switching Diffusions: Properties and Applications," Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.

[21]

Q. Zhang, Stock trading: An optimal selling rule, SIAM J. Control Optim., 40 (2001), 64-87. doi: 10.1137/S0363012999356325.

[22]

X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: A continuous-time model, SIAM J. Control Optim., 42 (2003), 1466-1482. doi: 10.1137/S0363012902405583.

[1]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[2]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[3]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[4]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[5]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021034

[6]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156

[7]

Dragos-Patru Covei, Elena Cristina Canepa, Traian A. Pirvu. Stochastic production planning with regime switching. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022013

[8]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[9]

Ishak Alia, Mohamed Sofiane Alia. Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022048

[10]

Lin Xu, Dingjun Yao, Gongpin Cheng. Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax. Journal of Industrial and Management Optimization, 2020, 16 (1) : 325-356. doi: 10.3934/jimo.2018154

[11]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2415-2433. doi: 10.3934/jimo.2021074

[12]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[13]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial and Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[14]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[15]

Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3743-3766. doi: 10.3934/dcdsb.2016119

[16]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[18]

Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. Dynamics of a stochastic HIV/AIDS model with treatment under regime switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3177-3211. doi: 10.3934/dcdsb.2021181

[19]

Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021309

[20]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]