March  2012, 2(1): 1-16. doi: 10.3934/mcrf.2012.2.1

Exponential stability of a general network of 1-d thermoelastic rods

1. 

Université de Sfax, Institut Supérieur d’Informatique et du Multimédia de Sfax, Pôle technologique, Route de Tunis, km 10, B.P. 242, Sfax 3021, Tunisia

2. 

Université de Sfax, Institut Supérieur d’Informatique et du Multimédia de Sfax, Route Manzel Chaker, Km 0.5, B.P. 1172, Sfax 3018, Tunisia

Received  November 2010 Revised  December 2011 Published  January 2012

We consider a finite planar network of 1-$d$ thermoelastic rods using Fourier's law or Cattaneo's law for heat conduction, we show that the system is exponentially stable in the two cases.
Citation: Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control and Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1
References:
[1]

K. Ammari, Z. Liu and M. Tucsnak, Decay rates for a beam with pointwise force and moment feedback, Math. Control Signals Systems, 15 (2002), 229-255. doi: 10.1007/s004980200009.

[2]

D. E. Carlson, Linear thermoelasticity, in "Handbuch der Physik," Springer-Verlag, Berlin, (1972), 297-346.

[3]

C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comput. Rendus, 247 (1958), 431-433.

[4]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures," Mathématiques & Applications, 50, Springer-Verlag, Berlin, 2006.

[5]

J. E. Muñoz Rivera, F. Ammar Khodja, A. Benabdallah and R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[6]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1.

[7]

Y. N. Guo and G. Q. Xu, Stability and Riesz basis property for general network of strings, J. Dynamical and Control Systems, 15 (2009), 223-245. doi: 10.1007/s10883-009-9064-1.

[8]

S. Jiang and R. Racke, "Evolution Equation in Thermoelasticity," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 112, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[9]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Mathematical Methods in the Applied Sciences, 16 (1993), 327-358. doi: 10.1002/mma.1670160503.

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rat. Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[11]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Archives Rat. Mech. Anal., 148 (1999), 179-231. doi: 10.1007/s002050050160.

[12]

Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.

[13]

A. Marzocchi, J. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Meth. Appl. Sci., 25 (2002), 955-980. doi: 10.1002/mma.323.

[14]

A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, 1983.

[15]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.1090/S0002-9947-1984-0743749-9.

[16]

R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[17]

R. Racke, J. E. M. Rivera and H. F. Sare, Stability for a transmission problem in thermoelasticity with second sound, Journal of Thermal Stresses, 31 (2008), 1170-1189. doi: 10.1080/01495730802508004.

[18]

Y. Saad, "Iterative Methods for Sparse Linear Systems," Second edition, SIAM, Philadelphia, PA, 2003.

[19]

Hugo D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[20]

J. von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Lin. Algebra Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7.

show all references

References:
[1]

K. Ammari, Z. Liu and M. Tucsnak, Decay rates for a beam with pointwise force and moment feedback, Math. Control Signals Systems, 15 (2002), 229-255. doi: 10.1007/s004980200009.

[2]

D. E. Carlson, Linear thermoelasticity, in "Handbuch der Physik," Springer-Verlag, Berlin, (1972), 297-346.

[3]

C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comput. Rendus, 247 (1958), 431-433.

[4]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures," Mathématiques & Applications, 50, Springer-Verlag, Berlin, 2006.

[5]

J. E. Muñoz Rivera, F. Ammar Khodja, A. Benabdallah and R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[6]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1.

[7]

Y. N. Guo and G. Q. Xu, Stability and Riesz basis property for general network of strings, J. Dynamical and Control Systems, 15 (2009), 223-245. doi: 10.1007/s10883-009-9064-1.

[8]

S. Jiang and R. Racke, "Evolution Equation in Thermoelasticity," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 112, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[9]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Mathematical Methods in the Applied Sciences, 16 (1993), 327-358. doi: 10.1002/mma.1670160503.

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rat. Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[11]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Archives Rat. Mech. Anal., 148 (1999), 179-231. doi: 10.1007/s002050050160.

[12]

Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.

[13]

A. Marzocchi, J. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Meth. Appl. Sci., 25 (2002), 955-980. doi: 10.1002/mma.323.

[14]

A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, 1983.

[15]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.1090/S0002-9947-1984-0743749-9.

[16]

R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[17]

R. Racke, J. E. M. Rivera and H. F. Sare, Stability for a transmission problem in thermoelasticity with second sound, Journal of Thermal Stresses, 31 (2008), 1170-1189. doi: 10.1080/01495730802508004.

[18]

Y. Saad, "Iterative Methods for Sparse Linear Systems," Second edition, SIAM, Philadelphia, PA, 2003.

[19]

Hugo D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[20]

J. von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Lin. Algebra Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7.

[1]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[2]

Chaker Jammazi, Souhila Loucif. On the global controllability of the 1-D Boussinesq equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1499-1523. doi: 10.3934/dcdss.2022096

[3]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations and Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[4]

Zhong-Jie Han, Enrique Zuazua. Decay rates for $1-d$ heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11 (4) : 655-692. doi: 10.3934/nhm.2016013

[5]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[6]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[7]

Akram Aldroubi, Rocio Diaz Martin, Ivan Medri, Gustavo K. Rohde, Sumati Thareja. The Signed Cumulative Distribution Transform for 1-D signal analysis and classification. Foundations of Data Science, 2022, 4 (1) : 137-163. doi: 10.3934/fods.2022001

[8]

Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039

[9]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[10]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[11]

Harbir Antil, Shodai Kubota, Ken Shirakawa, Noriaki Yamazaki. Optimal control problems governed by 1-D Kobayashi–Warren–Carter type systems. Mathematical Control and Related Fields, 2021, 11 (2) : 253-289. doi: 10.3934/mcrf.2020036

[12]

Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281

[13]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure and Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[14]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[15]

Katherine A. Kime. Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1601-1621. doi: 10.3934/dcdsb.2018063

[16]

Xavier Cabré, Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1179-1206. doi: 10.3934/dcds.2010.28.1179

[17]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[18]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[19]

Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

[20]

Àngel Jorba, Joan Carles Tatjer. A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 537-567. doi: 10.3934/dcdsb.2008.10.537

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]