-
Previous Article
The simplest semilinear parabolic equation of normal type
- MCRF Home
- This Issue
-
Next Article
Numerical approximation of an optimization problem to reduce leakage in water distribution systems
On the control of some coupled systems of the Boussinesq kind with few controls
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain |
2. | Dpto. de Matemática, Universidade Federal da Paraba, 58051-900, João Pessoa, Brazil |
References:
[1] |
V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'' Translated from Russina by V. M. Volosov, Contemp. Soviet Math., Consultants Bureau, New York, 1987. |
[2] |
J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, Journal of Differrential Equations, 246 (2009), 2908-2921.
doi: 10.1016/j.jde.2008.10.019. |
[3] |
E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542. |
[4] |
E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.
doi: 10.1137/04061965X. |
[5] |
A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'' Lectures Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[6] |
A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation, Russian Math. Surveys, 54 (1999), 565-618.
doi: 10.1070/RM1999v054n03ABEH000153. |
[7] |
S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 23 (2006), 29-61. |
[8] |
O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Cal. Var., 6 (2001), 39-72. |
[9] |
O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, C. R. Math. Acad. Sci. Paris, 335 (2002), 33-38.
doi: 10.1016/S1631-073X(02)02389-0. |
show all references
References:
[1] |
V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'' Translated from Russina by V. M. Volosov, Contemp. Soviet Math., Consultants Bureau, New York, 1987. |
[2] |
J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, Journal of Differrential Equations, 246 (2009), 2908-2921.
doi: 10.1016/j.jde.2008.10.019. |
[3] |
E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542. |
[4] |
E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.
doi: 10.1137/04061965X. |
[5] |
A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'' Lectures Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[6] |
A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation, Russian Math. Surveys, 54 (1999), 565-618.
doi: 10.1070/RM1999v054n03ABEH000153. |
[7] |
S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 23 (2006), 29-61. |
[8] |
O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Cal. Var., 6 (2001), 39-72. |
[9] |
O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, C. R. Math. Acad. Sci. Paris, 335 (2002), 33-38.
doi: 10.1016/S1631-073X(02)02389-0. |
[1] |
Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169 |
[2] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[3] |
Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021 |
[4] |
Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations and Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1 |
[5] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[6] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[7] |
Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042 |
[8] |
A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289 |
[9] |
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 |
[10] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[11] |
Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273 |
[12] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[13] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[14] |
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 |
[15] |
Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 |
[16] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[17] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[18] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[19] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[20] |
Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]