June  2012, 2(2): 141-170. doi: 10.3934/mcrf.2012.2.141

The simplest semilinear parabolic equation of normal type

1. 

Department of Mechanics & Mathematics, Moscow State University, Moscow 119991, Russian Federation

Received  June 2011 Revised  February 2012 Published  May 2012

The notion of semilinear parabolic equation of normal type is introduced. The structure of dynamical flow corresponding to equation of this type with periodic boundary condition is investigated. Stabilization of mentioned equation with arbitrary initial condition by start control supported in prescribed subset is constructed.
Citation: Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control and Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control," Translated from the Russian by V. M. Volosov, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1987.

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, in "Séminaire sur les Équations aux Dérivées Partielles, 1993-1994," Exp. No. VIII, École Polytechnique, Palaiseau, (1994), 12 pp.

[3]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics (2), 173 (2011), 983-1012. doi: 10.4007/annals.2011.173.2.9.

[4]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315. doi: 10.1007/BF00276188.

[5]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations, Discrete and Continuous Dynamical System Ser. S, 3 (2010), 269-289.

[6]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications," Translations of Mathematical Monographs, 187, Amer. Math. Society, Providence, Rhode Island, 2000.

[7]

A. V. Fursikov, Stabilizability of a quasilinear parabolic equation by means of boundary feedback control, Sbornik: Mathematics, 192 (2001), 593-639. doi: 10.1070/SM2001v192n04ABEH000560.

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control, J. of Math. Fluid Mech., 3 (2001), 259-301.

[9]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Cont. Dyn. Syst., 10 (2004), 289-314. doi: 10.3934/dcds.2004.10.289.

[10]

A. V. Fursikov, Unique solvability "in large" of the three-dimensional Navier-Stokes system and moment equations for a dense set of data, in "Mathematical Problems of Statistical Hydrodynamics" (by M. I. Vishik and A. V. Fursikov), Appendix 1, Kluwer, Dordrecht, 1988.

[11]

M. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Mathematics, 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Second English edition, revixed and enlarged, Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.

[13]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace , Acta Matematica, 63 (1933), 193-248. doi: 10.1007/BF02547354.

[14]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique, Journal de Mathématiques Pures et Appliquées, 12 (1933), 1-82.

[15]

F. Weissler, The Navier-Stokes initial value problem in $L^p$, Archiv for Rational Mechanics and Analysis, 74 (1980), 219-230. doi: 10.1007/BF00280539.

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control," Translated from the Russian by V. M. Volosov, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1987.

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, in "Séminaire sur les Équations aux Dérivées Partielles, 1993-1994," Exp. No. VIII, École Polytechnique, Palaiseau, (1994), 12 pp.

[3]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics (2), 173 (2011), 983-1012. doi: 10.4007/annals.2011.173.2.9.

[4]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315. doi: 10.1007/BF00276188.

[5]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations, Discrete and Continuous Dynamical System Ser. S, 3 (2010), 269-289.

[6]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications," Translations of Mathematical Monographs, 187, Amer. Math. Society, Providence, Rhode Island, 2000.

[7]

A. V. Fursikov, Stabilizability of a quasilinear parabolic equation by means of boundary feedback control, Sbornik: Mathematics, 192 (2001), 593-639. doi: 10.1070/SM2001v192n04ABEH000560.

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control, J. of Math. Fluid Mech., 3 (2001), 259-301.

[9]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Cont. Dyn. Syst., 10 (2004), 289-314. doi: 10.3934/dcds.2004.10.289.

[10]

A. V. Fursikov, Unique solvability "in large" of the three-dimensional Navier-Stokes system and moment equations for a dense set of data, in "Mathematical Problems of Statistical Hydrodynamics" (by M. I. Vishik and A. V. Fursikov), Appendix 1, Kluwer, Dordrecht, 1988.

[11]

M. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Mathematics, 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Second English edition, revixed and enlarged, Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.

[13]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace , Acta Matematica, 63 (1933), 193-248. doi: 10.1007/BF02547354.

[14]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique, Journal de Mathématiques Pures et Appliquées, 12 (1933), 1-82.

[15]

F. Weissler, The Navier-Stokes initial value problem in $L^p$, Archiv for Rational Mechanics and Analysis, 74 (1980), 219-230. doi: 10.1007/BF00280539.

[1]

Boumediène Chentouf, Baowei Feng. On the stabilization of a flexible structure via a nonlinear delayed boundary control. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022032

[2]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[3]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090

[4]

Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073

[5]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[6]

Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055

[7]

Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

[8]

Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics and Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004

[9]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[10]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[11]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[12]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021207

[13]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[14]

Cheng-Jie Liu, Ya-Guang Wang, Tong Yang. Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2011-2029. doi: 10.3934/dcdss.2016082

[15]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[16]

Wasim Akram, Debanjana Mitra. Local stabilization of viscous Burgers equation with memory. Evolution Equations and Control Theory, 2022, 11 (3) : 939-973. doi: 10.3934/eect.2021032

[17]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[18]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[19]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[20]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]