\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximate controllability of semilinear reaction diffusion equations

Abstract Related Papers Cited by
  • In this paper we prove the approximate controllability of the a broad class of semilinear reaction diffusion equation in a Hilbert space, with application to the semilinear $n$D heat equation, the Ornstein-Uhlenbeck equation, amount others.
    Mathematics Subject Classification: Primary: 93B05; Secondary: 93C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Appell, H. Leiva, N. Merentes and A. VignoliUn espectro de compresión no lineal con aplicaciones a la controlabilidad aproximada de sistemas semilineales, preprint.

    [2]

    S. Axler, P. Bourdon and W. Ramey, "Harmonic Function Theory," Graduate Texts in Math., 137, Springer Verlag, New York, 1992.

    [3]

    D. Barcenas, H. Leiva and Z. Sívoli, A broad class of evolution equations are approximately controllable, but never exactly controllable, IMA J. Math. Control Inform., 22 (2005), 310-320.doi: 10.1093/imamci/dni029.

    [4]

    D. Barcenas, H. Leiva and W. Urbina, Controllability of the Ornstein-Uhlenbeck equation, IMA J. Math. Control Inform., 23 (2006), 1-9.

    [5]

    D. Barcenas, H. Leiva, Y. Quintana and W. Urbina, Controllability of Laguerre and Jacobi equations, International Journal of Control, 80 (2007), 1307-1315.doi: 10.1080/00207170701294581.

    [6]

    R. F. Curtain and A. J. Pritchard, "Infinite Dimensional Linear Systems," Lecture Notes in Control and Information Sciences, 8, Springer Verlag, Berlin, 1978.

    [7]

    R. F. Curtain and H. J. Zwart, "An Introduction to Infinite Dimensional Linear Systems Theory," Text in Applied Mathematics, 21, Springer Verlag, New York, 1995.

    [8]

    C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31-61.doi: 10.1017/S0308210500030742.

    [9]

    J. I. Díaz, J. Henry and A. M. Ramos, On the approximate controllability of some semilinear parabolic boundary-value problems, Appl. Math. Optim., 37 (1998), 71-97.doi: 10.1007/s002459900069.

    [10]

    E. Fernandez-Cara, Remark on approximate and null controllability of semilinear parabolic equations, ESAIM: Proceeding of Controle et Equations aux Derivees Partielles, 4 (1998), 73-81.

    [11]

    E. Fernandez-Cara and E. Zuazua, Controllability for blowing up semilinear parabolic equations, C. R. Acad. Sci. Paris Sér I Math., 330 (2000), 199-204.

    [12]

    L. Hormander, "Linear Partial Differential Equations," Springer Verlag, 1969.

    [13]

    H. Leiva, N. Merentes and J. L. Sanchez, Interior controllability of the $nD$ semilinear heat equation, African Diaspora Journal of Mathematics, Special Vol. in Honor of Profs. C. Corduneanu, A. Fink and S. Zaidman., 12 (2011), 1-12.

    [14]

    H. Leiva and Y. Quintana, Interior controllability of a broad class of reaction diffusion equations, Mathematical Problems in Engineering, 2009, Article ID 708516, 8 pp.doi: 10.1155/2009/708516.

    [15]

    K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722.doi: 10.1137/0325040.

    [16]

    K. Naito, Approximate controllability for trajectories of semilinear control systems, J. of Optimization Theory and Appl., 60 (1989), 57-65.doi: 10.1007/BF00938799.

    [17]

    M. H. Protter, Unique continuation for elliptic equations, Transaction of the American Mathematical Society, 95 (1960), 81-91.doi: 10.1090/S0002-9947-1960-0113030-3.

    [18]

    D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 636-739.doi: 10.1137/1020095.

    [19]

    L. De Teresa, Approximate controllability of semilinear heat equation in $\mathbbR^N$, SIAM J. Control Optim., 36 (1998), 2128-2147.doi: 10.1137/S036012997322042.

    [20]

    L. De Teresa and E. Zuazua, Approximate controllability of semilinear heat equation in unbounded domains, Nonlinear Anal., 8 (1999).

    [21]

    Xu Zhang, A remark on null exact controllability of the heat equation, SIAM J. Control Optim., 40 (2001), 39-53.doi: 10.1137/S0363012900371691.

    [22]

    E. Zuazua, Controllability of a system of linear thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315.

    [23]

    E. Zuazua, Control of partial differential equations and its semi-discrete approximation, Discrete and Continuous Dynamical Systems, 8 (2002), 469-513.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return