June  2012, 2(2): 183-194. doi: 10.3934/mcrf.2012.2.183

Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs

1. 

Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, China, China

Received  March 2011 Revised  November 2011 Published  May 2012

In this paper, we study the finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Instead of the standard error estimates under $L^2$- or $H^1$- norm, we apply the goal-oriented error estimates in order to avoid the difficulties which are generated by the nonsmoothness of the problem. We derive the a priori error estimates of the goal function, and the error bound is $O(h^2)$, which is the same as one for some well known quadratic optimal control problems governed by linear elliptic PDEs. Moreover, two kinds of practical algorithms are introduced to solve the underlying problem. Numerical experiments are provided to confirm our theoretical results.
Citation: Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control and Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183
References:
[1]

A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics, Numer. Math., 53 (1988), 1-11. doi: 10.1007/BF01395875.

[2]

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. doi: 10.1017/S0962492901000010.

[3]

B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37 (1999), 1176-1194. doi: 10.1137/S0363012997328609.

[4]

J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), 751-779. doi: 10.1137/030601296.

[5]

L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation, Frontiers of Mathematics in China, 5 (2010), 191-209.

[6]

X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems, SIAM J. Control Optim., 42 (2004), 2004-2015. doi: 10.1137/S0363012902414160.

[7]

X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations, SIAM J. Numer. Anal., 38 (2000), 1200-1216. doi: 10.1137/S0036142999356719.

[8]

F. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[9]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. doi: 10.1016/0022-247X(73)90022-X.

[10]

M. Hintermüller, A proximal bundle method based on approximate subgradients, Computational Optimization and Applications, 20 (2001), 245-266. doi: 10.1023/A:1011259017643.

[11]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints," Mathematical Modelling: Theory and Applications, 23, Springer, New York, 2009.

[12]

F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77-101.

[13]

F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Japan J. Appl. Math., 1 (1984), 369-403.

[14]

R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). 

[15]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Translated from the French by S. K. Mitter, Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971.

[16]

W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs," Science Press, Beijing, 2008.

[17]

J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization, Nonlinear Analysis, 66 (2007), 2016-2027. doi: 10.1016/j.na.2006.02.039.

[18]

D. Tiba, "Lectures on the Optimal Control of Elliptic Equations," University of Jyvaskyla Press, Finland, 1995.

show all references

References:
[1]

A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics, Numer. Math., 53 (1988), 1-11. doi: 10.1007/BF01395875.

[2]

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. doi: 10.1017/S0962492901000010.

[3]

B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37 (1999), 1176-1194. doi: 10.1137/S0363012997328609.

[4]

J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), 751-779. doi: 10.1137/030601296.

[5]

L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation, Frontiers of Mathematics in China, 5 (2010), 191-209.

[6]

X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems, SIAM J. Control Optim., 42 (2004), 2004-2015. doi: 10.1137/S0363012902414160.

[7]

X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations, SIAM J. Numer. Anal., 38 (2000), 1200-1216. doi: 10.1137/S0036142999356719.

[8]

F. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[9]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. doi: 10.1016/0022-247X(73)90022-X.

[10]

M. Hintermüller, A proximal bundle method based on approximate subgradients, Computational Optimization and Applications, 20 (2001), 245-266. doi: 10.1023/A:1011259017643.

[11]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints," Mathematical Modelling: Theory and Applications, 23, Springer, New York, 2009.

[12]

F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77-101.

[13]

F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Japan J. Appl. Math., 1 (1984), 369-403.

[14]

R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). 

[15]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Translated from the French by S. K. Mitter, Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971.

[16]

W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs," Science Press, Beijing, 2008.

[17]

J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization, Nonlinear Analysis, 66 (2007), 2016-2027. doi: 10.1016/j.na.2006.02.039.

[18]

D. Tiba, "Lectures on the Optimal Control of Elliptic Equations," University of Jyvaskyla Press, Finland, 1995.

[1]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[2]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[4]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[8]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[9]

Na Peng, Jiayu Han, Jing An. An efficient finite element method and error analysis for fourth order problems in a spherical domain. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022021

[10]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[11]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[12]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[13]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[14]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[15]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[16]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[17]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure and Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[18]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[19]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[20]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial and Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]