Advanced Search
Article Contents
Article Contents

A unified theory of maximum principle for continuous and discrete time optimal control problems

Abstract Related Papers Cited by
  • Traditionally, the time domains that are widely used in mathematical descriptions are limited to real numbers for the case of continuous-time optimal control problems or to integers for the case of discrete-time optimal control problems. In this paper, based on a family of "needle variations", we derive maximum principle for optimal control problem on time scales. The results not only unify the theory of continuous and discrete optimal control problems but also conclude problems involving time domains in partly continuous and partly discrete ingredients. A simple optimal control problem on time scales is discussed in detail. Meanwhile, the results also unify the theory of some hybrid systems, for example, impulsive systems.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Agarwal, V. O. Espinar, K. Perera and D. R. Vivero, Basic properties of Sobolev's space on time scales, Adv. Differential Equations, 2006, Art. ID 38121, 1-14.


    F. M. Atici, D. C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling., 43 (2006), 718-726.doi: 10.1016/j.mcm.2005.08.014.


    F. M. Atici and F. Uysal, A production-inventory model of HMMS on time scales, Appl. Math. Lett., 21 (2008), 236-243.doi: 10.1016/j.aml.2007.03.013.


    M. Bohner, Calculus of variations on time scales, J. Dynam. Systems Appl., 13 (2004), 339-349.


    M. Bohner and G. S. Gudeinov, Double integral calculus of variations of time scales, Comput. Math. Appl., 54 (2007), 45-57.doi: 10.1016/j.camwa.2006.10.032.


    M. Bohner and A. Peterson, "Dynamic Equations on Time Scales. An Introduction with Applications," Birkhäuser Boston, Inc., Boston, MA, 2001.


    A. G. Butkovskiĭ, The necessary and sufficient optimality conditions for of sampled-data control systems, (Russian), Avtomat. i Telemeh., 24 (1963), 1056-1064.


    A. Cabada and D. R. Vivero, Criterions for absolute continuity on time scales, J. Difference Equ. Appl., 11 (2005), 1013-1028.doi: 10.1080/10236190500272830.


    A. Cabada and D. R. Vivero, Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral: Application to the calculus of $\Delta$-antiderivatives, Math. Comput. Modelling, 43 (2006), 194-207.doi: 10.1016/j.mcm.2005.09.028.


    I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 443-474.


    Rui A. C. Ferreira and D. F. M. Torres, Higher-order calculus of variations on time scales, in "Mathematical Control Theory and Finance," Springer, Berlin, (2008), 149-159.


    Rui. A. C. Ferreira and D. F. M. Torres, Isoperimetric problems of the calculus of variations on time scales, in "Nonlinear Analysis and Optimization II. Optimization," Contemp. Math., 514, Amer. Math. Soc., Providence, RI, (2010), 123-131.


    J. G. P. Gamarra and R. V. Solé, Complex discrete dynamics from simple continuous population models, Bull. Math. Biol., 64 (2002), 611-620.doi: 10.1006/bulm.2002.0286.


    H. Geering, Continuous-time optimal control theory for cost functionals including discrete state penalty terms, IEEE Trans. Automat. Control., AC-21 (1976), 866-869.doi: 10.1109/TAC.1976.1101377.


    H. Halkin, A maximum principle of the Pontryagin type for systems described by nonlinear difference equations, SIAM J. Control., 4 (1966), 90-111.


    S. Hilger, Analysis on measure chains-a unified approach to continues and discrete calculus, Results Math., 18 (1990), 18-56.


    R. Hilscher and V. Zeidan, Calculus of variations on time scales: Weak local piecewise $C^$$1_{rd}$ solutions with variable endpoints, J. Math. Anal. Appl., 289 (2004), 143-166.doi: 10.1016/j.jmaa.2003.09.031.


    J. M. Holtzman, On the maximum principle for nonlinear discrete-time systems, IEEE Trans. Automat. Control, AC-11 (1966), 273-274.doi: 10.1109/TAC.1966.1098311.


    J. M. Holtzman, Convexity and the maximum principle for discrete systems, IEEE Trans. Automat. Control, AC-11 (1966), 30-35.doi: 10.1109/TAC.1966.1098311.


    F. Horn and R. Jackson, Correspondence discrete maximum principle, Ind. Eng. Chem. Fundamen., 4 (1965), 110-112.


    R. M. May, Simple mathematical models with very complicated dynamics, Nature., 261 (1976), 459-467.doi: 10.1038/261459a0.


    J. A. Oriega and R. J. Leake, Discrete maximum principle with state constrained control, SIAM J. Control. Optim., 15 (1977), 984-990.doi: 10.1137/0315063.


    J. B. Pearson, Jr. and R. Sridhar, A discrete optimal control problem, IEEE Trans. Automat. Control, AC-11 (1966), 171-174.doi: 10.1109/TAC.1966.1098287.


    A. I. Propoĭ, The maximum principle for discrete systems, Autom. Remote Control, 26 (1965), 1167-1177.


    J. B. Rosen, Optimal control and convex programming, in "1967 Nonlinear Programming"(NATO Summer School, Menton, 1964) (ed. J. Abadie), North-Holland, Amsterdam, 287-302.


    L. I. Rozonoèr, L.S. Pontryagin maximum principle of in the theory of optimum systems, Part III, Autom. Remote Control, 20 (1959), 1517-1532.


    C. C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal., 68 (2008), 3504-3524.doi: 10.1016/j.na.2007.03.043.


    J. M. Yong and H. W. Lou, "A Concise Course to Theory of Optimal Control," (in Chinese), Higher Education Press, Beijing, China, 2006.


    Z. Zhan and W. Wei, Necessary conditions for optimal control problems on time scales, Abstr. Appl. Anal., 2009, Art. ID 974394, 14 pp.


    Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales, Appl. Math. Comput., 215 (2009), 2070-2081.doi: 10.1016/j.amc.2009.08.009.


    Z. Zhan, W. Wei and Y. F. LiOptimal control problem with terminal state constraint on time scales, Pacific J. Optim., to appear.


    Z. Zhan, W. Wei and H. Xu, Hamilton-Jacobi-Bellman equations on time scales, Math. Comput. Modelling, 49 (2009), 2019-2028.doi: 10.1016/j.mcm.2008.12.008.

  • 加载中

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint