Advanced Search
Article Contents
Article Contents

Carleman inequalities for the two-dimensional heat equation in singular domains

Abstract Related Papers Cited by
  • We consider the Cauchy problem associated to the heat equation firstly in a plane domain with a reentrant corner, then in a cracked domain. By constructing a weight function, we prove a Carleman inequality and we deduce a result of controllability.
    Mathematics Subject Classification: Primary: 95B05, 35J30, 35B65, 35B25, 35J25.


    \begin{equation} \\ \end{equation}
  • [1]

    A-H. BelghaziNull controllability of three-dimensional heat equation for singular domains and stratified media spectral inequality, in preparation.


    A. H. Belghazi, F. Smadhi, N. Zaidi and O. Zair, Carleman inequalities for the heat equation in singular domains, C. R. Acad. Sci. Paris, 348 (2010), 277-282.doi: 10.1016/j.crma.2010.02.007.


    A. Benabdallah, Y. Dermenjian and J. Le Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Acad. Sci. Paris, 344 (2007), 357-362.


    R. Bey, J. P Lohéac and M. Moussaoui, Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation, J. Math. Pures Appl., 78 (1999), 1043-1067.


    L. Bourgeois, A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners, C. R. Acad. Sci. Paris, 345 (2007).


    H. Brézis, "Analyse Fonctionnelle, Théorie et Applications," Masson, 1983.


    N. Burq, Contrôle de l'équation des ondes dans des ouverts contenants des coins, Bull. Soc. math. Franc, 126 (1998), 601-637.


    T. Carleman, Sur un problème d'unicit'e pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 1-9.


    A. Doubova, A. Osses and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var., 8 (2002), 621-661.


    H-O. Fattorini and D-L.Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.


    H-O. Fattorini and D-L.RussellUniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69.


    E. Fernandez-Cara and S. Guerrero, Global Carleman Inequalities For Parabolic Systems And application To Controllability, SIAM J. Control Optim, 45 (2006), 1395-1446.doi: 10.1137/S0363012904439696.


    A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.


    P. Grisvard, Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, Journal Maths. Pures et Appl., 68 (1989), 215-259.


    P. Grisvard, "Singularities in Boundary Value Problems," Springer-Verlag, 1992.


    P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston, London, Melbourne, 1985.


    A. Heibig and M. A. Moussaoui, Exact controllability of the wave equation for domains with slits and for mixed boundary conditions, Discrete and continuous dynamical systems, 2 (1996), 367-386.


    L. Hörmander, "Linear Partial Differential Operators," Springer-verlag, 1963.


    J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations, 233 (2007), 417-447.doi: 10.1016/j.jde.2006.10.005.


    G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential. Equations, 20 (1995), 335-356.


    J. Le Rousseau and G. LebeauOn Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, to appear in ESAIM Control Optim. Calc. Var.


    M. A. Moussaoui and B. K. Saadallah, Régularité des coefficients de propagation de singularités de l'équation de la chaleur dans un domaine polygonal plan, C. R. Acad. Sci. Paris, 293 (1981), 297-300.


    S. Nicaise, Exact controllability of a pluridimensional coupled problem, Rev. Math. Univ. Complut. Madrid, 5 (1992), 91-135.


    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, New York, 1983.


    J. Zabczyk, "Mathematical Control Theory: An Introduction," Birkhäuser, 1995.

  • 加载中

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint