Citation: |
[1] |
A-H. Belghazi, Null controllability of three-dimensional heat equation for singular domains and stratified media spectral inequality, in preparation. |
[2] |
A. H. Belghazi, F. Smadhi, N. Zaidi and O. Zair, Carleman inequalities for the heat equation in singular domains, C. R. Acad. Sci. Paris, 348 (2010), 277-282.doi: 10.1016/j.crma.2010.02.007. |
[3] |
A. Benabdallah, Y. Dermenjian and J. Le Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Acad. Sci. Paris, 344 (2007), 357-362. |
[4] |
R. Bey, J. P Lohéac and M. Moussaoui, Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation, J. Math. Pures Appl., 78 (1999), 1043-1067. |
[5] |
L. Bourgeois, A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners, C. R. Acad. Sci. Paris, 345 (2007). |
[6] |
H. Brézis, "Analyse Fonctionnelle, Théorie et Applications," Masson, 1983. |
[7] |
N. Burq, Contrôle de l'équation des ondes dans des ouverts contenants des coins, Bull. Soc. math. Franc, 126 (1998), 601-637. |
[8] |
T. Carleman, Sur un problème d'unicit'e pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 1-9. |
[9] |
A. Doubova, A. Osses and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var., 8 (2002), 621-661. |
[10] |
H-O. Fattorini and D-L.Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292. |
[11] |
H-O. Fattorini and D-L.Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69. |
[12] |
E. Fernandez-Cara and S. Guerrero, Global Carleman Inequalities For Parabolic Systems And application To Controllability, SIAM J. Control Optim, 45 (2006), 1395-1446.doi: 10.1137/S0363012904439696. |
[13] |
A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[14] |
P. Grisvard, Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, Journal Maths. Pures et Appl., 68 (1989), 215-259. |
[15] |
P. Grisvard, "Singularities in Boundary Value Problems," Springer-Verlag, 1992. |
[16] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston, London, Melbourne, 1985. |
[17] |
A. Heibig and M. A. Moussaoui, Exact controllability of the wave equation for domains with slits and for mixed boundary conditions, Discrete and continuous dynamical systems, 2 (1996), 367-386. |
[18] |
L. Hörmander, "Linear Partial Differential Operators," Springer-verlag, 1963. |
[19] |
J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations, 233 (2007), 417-447.doi: 10.1016/j.jde.2006.10.005. |
[20] |
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential. Equations, 20 (1995), 335-356. |
[21] |
J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, to appear in ESAIM Control Optim. Calc. Var. |
[22] |
M. A. Moussaoui and B. K. Saadallah, Régularité des coefficients de propagation de singularités de l'équation de la chaleur dans un domaine polygonal plan, C. R. Acad. Sci. Paris, 293 (1981), 297-300. |
[23] |
S. Nicaise, Exact controllability of a pluridimensional coupled problem, Rev. Math. Univ. Complut. Madrid, 5 (1992), 91-135. |
[24] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, New York, 1983. |
[25] |
J. Zabczyk, "Mathematical Control Theory: An Introduction," Birkhäuser, 1995. |