\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain

Abstract Related Papers Cited by
  • In this paper we deal with the local exact controllability to a particular class of trajectories of the $N$-dimensional Boussinesq system with internal controls having $2$ vanishing components. The main novelty of this work is that no condition is imposed on the control domain.
    Mathematics Subject Classification: 34B15, 35Q30, 93C10, 93B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'' Translated from the Russian by V. M. Volosov, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987.

    [2]

    N. Carreño and S. GuerreroLocal null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain, to appear in Journal of Mathematical Fluid Mechanics, arXiv:1201.1197.

    [3]

    J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N-1 scalar controls, J. Differential Equations, 246 (2009), 2908-2921.doi: 10.1016/j.jde.2008.10.019.

    [4]

    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.

    [5]

    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier-Stokes system and Boussinesq systems with N-1 scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.doi: 10.1137/04061965X.

    [6]

    A. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,'' Lecture Notes 34, Seoul National University, Korea, 1996.

    [7]

    A. Fursikov and O. Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim., 36 (1998), 391-421.doi: 10.1137/S0363012996296796.

    [8]

    A. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Russian Math. Surveys, 54 (1999), 565-618.doi: 10.1070/RM1999v054n03ABEH000153.

    [9]

    S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. I. H. Poincaré, 23 (2006), 29-61.

    [10]

    O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6 (2001), 39-72.

    [11]

    O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math B., 30 (2009), 333-378.doi: 10.1007/s11401-008-0280-x.

    [12]

    O. A. Ladyzenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'' Revised English Edition, Translated from the Russian by Richard A. Silverlman, Gordon and Breach Science Publishers, New York, London, 1963.

    [13]

    J.-L. Lions and E. Magenes, "Problèmes aux Limites non Homogènes et Applications,'' Volume 2, Travaux et Recherches Mathmatiques, No. 18, Dunod, Paris, 1968.

    [14]

    R. Temam, "Navier-Stokes Equations: Theory ans Numerical Analysis,'' Stud. Math. Appl., Vol. 2, North-Holland, Amsterdam-New York-Oxford, 1977.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return