\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation

Abstract Related Papers Cited by
  • In this paper we study absolute minimizers and the Aronsson equation for a noncoercive Hamiltonian. We extend the definition of absolutely minimizing functions (in a viscosity sense) for the minimization of the $L^\infty$ norm of a Hamiltonian, within a class of locally Lipschitz continuous functions with respect to possibly noneuclidian metrics. The metric structure is naturally associated to the Hamiltonian and it is related to the a-priori regularity of the family of subsolutions of the Hamilton-Jacobi equation. A special but relevant case contained in our framework is that of Hamiltonians with a Carnot-Carathéodory metric structure determined by a family of vector fields (CC for short in the following), in particular the eikonal Hamiltonian and the corresponding anisotropic infinity-Laplace equation. In this case, the definition of absolute minimizer can be written in an almost classical way, by the theory of Sobolev spaces in a CC setting. In general open domains and with a prescribed continuous Dirichlet boundary condition, we prove the existence of an absolute minimizer which satisfies the Aronsson equation as a viscosity solution. The proof is based on Perron's method and relies on a-priori continuity estimates for absolute minimizers.
    Mathematics Subject Classification: Primary: 35J70, 35J20; Secondary: 35D40, 49J10, 49N90.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronsson, Minimization problems for the functional su$p_x F(x,f(x),f'(x))$, Ark. Math., 6 (1965), 33-53.

    [2]

    G. Aronsson, Minimization problems for the functional su$p_x F(x,f(x),f'(x))$. II, Ark. Math., 6 (1966), 409-431.doi: 10.1007/BF02590964.

    [3]

    G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Math., 6 (1967), 551-561.doi: 10.1007/BF02591928.

    [4]

    G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.

    [5]

    M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Birkhäuser, 1997.

    [6]

    M. Bardi and P. Soravia, Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229.doi: 10.1090/S0002-9947-1991-0991958-X.

    [7]

    G. Barles, "Solutions de Viscosité des Équations de Hamilton-Jacobi," Mathématiques & Applications, 17 Springer-Verlag, Paris, 1994.

    [8]

    G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Diff. Equations, 26 (2001), 2323-2337.doi: 10.1081/PDE-100107824.

    [9]

    E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Ration. Mech. Anal., 157 (2001), 255-283.

    [10]

    E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. Inst. H. Poincarè Anal. Non Lin'eaire, 18 (2001), 495-517.

    [11]

    T. Bieske, Properties of infinite harmonic functions of Grushin-type spaces, Rocky Mountain J. Math., 39 (2009), 729-756.doi: 10.1216/RMJ-2009-39-3-729.

    [12]

    T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathdory metrics, Trans. Am. Math. Soc., 357 (2005), 795-823.doi: 10.1090/S0002-9947-04-03601-3.

    [13]

    A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory for Their Sub-Laplacians," Springer Monographs in Mathematics. Springer, Berlin, 2007.

    [14]

    T. Champion and L. De Pascale, Principles of comparison with distance functions for absolute minimizers, J. Convex Anal., 14 (2007), 515-541.

    [15]

    T. Champion, L. De Pascale and F. Prinari, $\Gamma$-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var., 10 (2004), 14-27.

    [16]

    M. G. Crandall, G. Gunnarsson and P. Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), 1587-1615.doi: 10.1080/03605300601088807.

    [17]

    M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.

    [18]

    M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), 123-139.

    [19]

    M. G. Crandall, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal., 167 (2003), 271-279.

    [20]

    M. G. Crandall, C. Wang and Y. Yu, Derivation of the Aronsson equation for $C^1$ Hamiltonians, Trans. Amer. Math. Soc., 361 (2009), 103-124.doi: 10.1090/S0002-9947-08-04651-5.

    [21]

    L. C. Evans, Some new PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations, 17 (2003), 159-177.

    [22]

    W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Second edition. Stochastic Modelling and Applied Probability, 25. Springer, 2006.

    [23]

    B. Franchi, R. Serapioni and F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890.

    [24]

    B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117.

    [25]

    B. Franchi, P. Hajlasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924.doi: 10.5802/aif.1742.

    [26]

    M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, Nonlin. Diff. Equations Appl., 11 (2004), 271-298.doi: 10.1007/s00030-004-1058-9.

    [27]

    N. Garofalo and D. M. Nhieu, Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Caratheodory spaces, J. d' Analyse Mathematique, 74 (1998), 67-97.doi: 10.1007/BF02819446.

    [28]

    R. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.

    [29]

    R. R. Jensen, C. Wang and Y. Yu, Uniqueness and nonuniqueness of viscosity solutions to Aronsson's equation, Arch. Ration. Mech. Anal., 190 (2008), 347-370.doi: 10.1007/s00205-007-0093-1.

    [30]

    V. Julin, Existence of an absolute minimizer via Perron's method, J. Convex Anal., 18 (2011), 277-284.

    [31]

    P. Juutinen, "Minimization Problems for Lipschitz Functions Via Viscosity Solutions, Dissertation," University of Jyväkulä, Jyväkulä, 1998. Ann. Acad. Sci. Fenn. Math. Diss, 115 (1998), 53 pp.

    [32]

    P. Juutinen, Absolutely minimizing Lipschitz extensions on a metric space, Ann. Acad. Sci. Fenn. Math., 27 (2002), 57-67.

    [33]

    P. L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," Research Notes in Mathematics, 69 Pitman, Boston, Mass.-London, 1982.

    [34]

    R. Monti, "Distances, Boundaries and Surface Measures in Carnot-Carathèodory Spaces," Ph.D Thesis Series 31, Dipartimento di Matematica Università degli Studi di Trento, 2001.

    [35]

    R. Monti and F. Serra Cassano, Surface measures in Carnot-Carathdory spaces, Calc. Var. Partial Differential Equations, 13 (2001), 339-376.

    [36]

    P. Pansu, Métriques de Carnot-Carathdory et quasiisomries des espaces symriques de rang un, Ann. of Math., 129 (1989), 1-60.doi: 10.2307/1971484.

    [37]

    P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12 (1999), 275-293.

    [38]

    P. Soravia, On Aronsson equation and deterministic optimal control, Appl. Math. Optim., 59 (2009), 175-201.doi: 10.1007/s00245-008-9048-7.

    [39]

    P. Soravia, Viscosity and almost everywhere solutions of first-order Carnot-Carathèodory Hamilton-Jacobi equations, Boll. Unione Mat. Ital., 9 (2010), 391-406.

    [40]

    C. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113.doi: 10.1090/S0002-9947-06-03897-9.

    [41]

    Y. Yu, $L^\infty$ variational problems and Aronsson equations, Arch. Ration. Mech. Anal., 182 (2006), 153-180.doi: 10.1007/s00205-006-0424-7.

    [42]

    Y. Yu, $L^\infty$ variational problems and weak KAM theory, Comm. Pure Appl. Math., 60 (2007), 1111-1147.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return