Citation: |
[1] |
G. Aronsson, Minimization problems for the functional su$p_x F(x,f(x),f'(x))$, Ark. Math., 6 (1965), 33-53. |
[2] |
G. Aronsson, Minimization problems for the functional su$p_x F(x,f(x),f'(x))$. II, Ark. Math., 6 (1966), 409-431.doi: 10.1007/BF02590964. |
[3] |
G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Math., 6 (1967), 551-561.doi: 10.1007/BF02591928. |
[4] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505. |
[5] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Birkhäuser, 1997. |
[6] |
M. Bardi and P. Soravia, Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229.doi: 10.1090/S0002-9947-1991-0991958-X. |
[7] |
G. Barles, "Solutions de Viscosité des Équations de Hamilton-Jacobi," Mathématiques & Applications, 17 Springer-Verlag, Paris, 1994. |
[8] |
G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Diff. Equations, 26 (2001), 2323-2337.doi: 10.1081/PDE-100107824. |
[9] |
E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Ration. Mech. Anal., 157 (2001), 255-283. |
[10] |
E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. Inst. H. Poincarè Anal. Non Lin'eaire, 18 (2001), 495-517. |
[11] |
T. Bieske, Properties of infinite harmonic functions of Grushin-type spaces, Rocky Mountain J. Math., 39 (2009), 729-756.doi: 10.1216/RMJ-2009-39-3-729. |
[12] |
T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathdory metrics, Trans. Am. Math. Soc., 357 (2005), 795-823.doi: 10.1090/S0002-9947-04-03601-3. |
[13] |
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory for Their Sub-Laplacians," Springer Monographs in Mathematics. Springer, Berlin, 2007. |
[14] |
T. Champion and L. De Pascale, Principles of comparison with distance functions for absolute minimizers, J. Convex Anal., 14 (2007), 515-541. |
[15] |
T. Champion, L. De Pascale and F. Prinari, $\Gamma$-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var., 10 (2004), 14-27. |
[16] |
M. G. Crandall, G. Gunnarsson and P. Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), 1587-1615.doi: 10.1080/03605300601088807. |
[17] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. |
[18] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), 123-139. |
[19] |
M. G. Crandall, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal., 167 (2003), 271-279. |
[20] |
M. G. Crandall, C. Wang and Y. Yu, Derivation of the Aronsson equation for $C^1$ Hamiltonians, Trans. Amer. Math. Soc., 361 (2009), 103-124.doi: 10.1090/S0002-9947-08-04651-5. |
[21] |
L. C. Evans, Some new PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations, 17 (2003), 159-177. |
[22] |
W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Second edition. Stochastic Modelling and Applied Probability, 25. Springer, 2006. |
[23] |
B. Franchi, R. Serapioni and F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. |
[24] |
B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. |
[25] |
B. Franchi, P. Hajlasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924.doi: 10.5802/aif.1742. |
[26] |
M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, Nonlin. Diff. Equations Appl., 11 (2004), 271-298.doi: 10.1007/s00030-004-1058-9. |
[27] |
N. Garofalo and D. M. Nhieu, Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Caratheodory spaces, J. d' Analyse Mathematique, 74 (1998), 67-97.doi: 10.1007/BF02819446. |
[28] |
R. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. |
[29] |
R. R. Jensen, C. Wang and Y. Yu, Uniqueness and nonuniqueness of viscosity solutions to Aronsson's equation, Arch. Ration. Mech. Anal., 190 (2008), 347-370.doi: 10.1007/s00205-007-0093-1. |
[30] |
V. Julin, Existence of an absolute minimizer via Perron's method, J. Convex Anal., 18 (2011), 277-284. |
[31] |
P. Juutinen, "Minimization Problems for Lipschitz Functions Via Viscosity Solutions, Dissertation," University of Jyväkulä, Jyväkulä, 1998. Ann. Acad. Sci. Fenn. Math. Diss, 115 (1998), 53 pp. |
[32] |
P. Juutinen, Absolutely minimizing Lipschitz extensions on a metric space, Ann. Acad. Sci. Fenn. Math., 27 (2002), 57-67. |
[33] |
P. L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," Research Notes in Mathematics, 69 Pitman, Boston, Mass.-London, 1982. |
[34] |
R. Monti, "Distances, Boundaries and Surface Measures in Carnot-Carathèodory Spaces," Ph.D Thesis Series 31, Dipartimento di Matematica Università degli Studi di Trento, 2001. |
[35] |
R. Monti and F. Serra Cassano, Surface measures in Carnot-Carathdory spaces, Calc. Var. Partial Differential Equations, 13 (2001), 339-376. |
[36] |
P. Pansu, Métriques de Carnot-Carathdory et quasiisomries des espaces symriques de rang un, Ann. of Math., 129 (1989), 1-60.doi: 10.2307/1971484. |
[37] |
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12 (1999), 275-293. |
[38] |
P. Soravia, On Aronsson equation and deterministic optimal control, Appl. Math. Optim., 59 (2009), 175-201.doi: 10.1007/s00245-008-9048-7. |
[39] |
P. Soravia, Viscosity and almost everywhere solutions of first-order Carnot-Carathèodory Hamilton-Jacobi equations, Boll. Unione Mat. Ital., 9 (2010), 391-406. |
[40] |
C. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113.doi: 10.1090/S0002-9947-06-03897-9. |
[41] |
Y. Yu, $L^\infty$ variational problems and Aronsson equations, Arch. Ration. Mech. Anal., 182 (2006), 153-180.doi: 10.1007/s00205-006-0424-7. |
[42] |
Y. Yu, $L^\infty$ variational problems and weak KAM theory, Comm. Pure Appl. Math., 60 (2007), 1111-1147. |