\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of the determination of a time-dependent coefficient in parabolic equations

Abstract Related Papers Cited by
  • We establish a Lipschitz stability estimate for the inverse problem consisting in the determination of the coefficient $\sigma(t)$, appearing in a Dirichlet initial-boundary value problem for the parabolic equation $\partial_tu-\Delta_x u+\sigma(t)f(x)u=0$, from Neumann boundary data. We extend this result to the same inverse problem when the previous linear parabolic equation is changed to the semi-linear parabolic equation $\partial_tu-\Delta_x u=F(x,t,\sigma(t),u(x,t))$.
    Mathematics Subject Classification: 35R30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.

    [2]

    J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation, in "Inverse Problems" (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., 77, Birkhäuser, Basel, (1986), 133-137.

    [3]

    J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations, Inverse Problems, 4 (1988), 35-45.

    [4]

    J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl., 145 (1990), 470-484.doi: 10.1016/0022-247X(90)90414-B.

    [5]

    M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128.doi: 10.1155/S1048953391000084.

    [6]

    M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.doi: 10.1016/0022-247X(91)90299-F.

    [7]

    M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques," Mathématiques & Applications (Berlin), 65, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-642-02460-3.

    [8]

    M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462.doi: 10.3934/cpaa.2006.5.447.

    [9]

    M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients, J. Inv. Ill-Posed Problems, 14 (2006), 355-373.doi: 10.1163/156939406777570996.

    [10]

    M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation, Arch. Math. (Basel), 97 (2011), 587-597.doi: 10.1007/s00013-011-0329-z.

    [11]

    G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Commun. PDE, 32 (2007), 1737-1758.doi: 10.1080/03605300701382340.

    [12]

    G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18 pp.doi: 10.1063/1.2841329.

    [13]

    S. Itô, "Diffusion Equations," Transaction of Mathematical Monographs, 114, AMS, Providence, RI, 1992.

    [14]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Math. Soc., Providence, RI, 1968.

    [15]

    A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation," Proc. of the Meeting, Volerra Integrodifferential Equations in Banach Spaces, Trento, Pitman, London, 1987.

    [16]

    A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, J. Nonlinear Anal., 12 (1988), 1317-1335.doi: 10.1016/0362-546X(88)90080-6.

    [17]

    A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I, Translations from Diff. Uravn., 21 (1985), 119-129, 182.

    [18]

    A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II, Translations from Diff. Uravn., 21 (1985), 694-701, 735.

    [19]

    R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem," Ph.D. Thesis, University of California, Los Angeles, 2010.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return