• Previous Article
    Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control
  • MCRF Home
  • This Issue
  • Next Article
    Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws
June  2013, 3(2): 143-160. doi: 10.3934/mcrf.2013.3.143

Stability of the determination of a time-dependent coefficient in parabolic equations

1. 

LMAM, UMR 7122, Université de Lorraine, Ile du Saulcy, 57045 Metz, cedex 1, France

2. 

UMR-7332, Aix Marseille Université, Centre de Physique Théorique, Campus de Luminy, Case 907, 13288 Marseille, cedex 9, France

Received  February 2012 Revised  May 2012 Published  March 2013

We establish a Lipschitz stability estimate for the inverse problem consisting in the determination of the coefficient $\sigma(t)$, appearing in a Dirichlet initial-boundary value problem for the parabolic equation $\partial_tu-\Delta_x u+\sigma(t)f(x)u=0$, from Neumann boundary data. We extend this result to the same inverse problem when the previous linear parabolic equation is changed to the semi-linear parabolic equation $\partial_tu-\Delta_x u=F(x,t,\sigma(t),u(x,t))$.
Citation: Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143
References:
[1]

J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.  Google Scholar

[2]

J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation, in "Inverse Problems" (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., 77, Birkhäuser, Basel, (1986), 133-137.  Google Scholar

[3]

J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations, Inverse Problems, 4 (1988), 35-45.  Google Scholar

[4]

J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl., 145 (1990), 470-484. doi: 10.1016/0022-247X(90)90414-B.  Google Scholar

[5]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128. doi: 10.1155/S1048953391000084.  Google Scholar

[6]

M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202. doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[7]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques," Mathématiques & Applications (Berlin), 65, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[8]

M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462. doi: 10.3934/cpaa.2006.5.447.  Google Scholar

[9]

M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients, J. Inv. Ill-Posed Problems, 14 (2006), 355-373. doi: 10.1163/156939406777570996.  Google Scholar

[10]

M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation, Arch. Math. (Basel), 97 (2011), 587-597. doi: 10.1007/s00013-011-0329-z.  Google Scholar

[11]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Commun. PDE, 32 (2007), 1737-1758. doi: 10.1080/03605300701382340.  Google Scholar

[12]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18 pp. doi: 10.1063/1.2841329.  Google Scholar

[13]

S. Itô, "Diffusion Equations," Transaction of Mathematical Monographs, 114, AMS, Providence, RI, 1992.  Google Scholar

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Math. Soc., Providence, RI, 1968.  Google Scholar

[15]

A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation," Proc. of the Meeting, Volerra Integrodifferential Equations in Banach Spaces, Trento, Pitman, London, 1987. Google Scholar

[16]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, J. Nonlinear Anal., 12 (1988), 1317-1335. doi: 10.1016/0362-546X(88)90080-6.  Google Scholar

[17]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I, Translations from Diff. Uravn., 21 (1985), 119-129, 182.  Google Scholar

[18]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II, Translations from Diff. Uravn., 21 (1985), 694-701, 735.  Google Scholar

[19]

R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem," Ph.D. Thesis, University of California, Los Angeles, 2010.  Google Scholar

show all references

References:
[1]

J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.  Google Scholar

[2]

J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation, in "Inverse Problems" (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., 77, Birkhäuser, Basel, (1986), 133-137.  Google Scholar

[3]

J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations, Inverse Problems, 4 (1988), 35-45.  Google Scholar

[4]

J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl., 145 (1990), 470-484. doi: 10.1016/0022-247X(90)90414-B.  Google Scholar

[5]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128. doi: 10.1155/S1048953391000084.  Google Scholar

[6]

M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202. doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[7]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques," Mathématiques & Applications (Berlin), 65, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[8]

M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462. doi: 10.3934/cpaa.2006.5.447.  Google Scholar

[9]

M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients, J. Inv. Ill-Posed Problems, 14 (2006), 355-373. doi: 10.1163/156939406777570996.  Google Scholar

[10]

M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation, Arch. Math. (Basel), 97 (2011), 587-597. doi: 10.1007/s00013-011-0329-z.  Google Scholar

[11]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Commun. PDE, 32 (2007), 1737-1758. doi: 10.1080/03605300701382340.  Google Scholar

[12]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18 pp. doi: 10.1063/1.2841329.  Google Scholar

[13]

S. Itô, "Diffusion Equations," Transaction of Mathematical Monographs, 114, AMS, Providence, RI, 1992.  Google Scholar

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Math. Soc., Providence, RI, 1968.  Google Scholar

[15]

A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation," Proc. of the Meeting, Volerra Integrodifferential Equations in Banach Spaces, Trento, Pitman, London, 1987. Google Scholar

[16]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, J. Nonlinear Anal., 12 (1988), 1317-1335. doi: 10.1016/0362-546X(88)90080-6.  Google Scholar

[17]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I, Translations from Diff. Uravn., 21 (1985), 119-129, 182.  Google Scholar

[18]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II, Translations from Diff. Uravn., 21 (1985), 694-701, 735.  Google Scholar

[19]

R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem," Ph.D. Thesis, University of California, Los Angeles, 2010.  Google Scholar

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[4]

Mourad Choulli, El Maati Ouhabaz, Masahiro Yamamoto. Stable determination of a semilinear term in a parabolic equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 447-462. doi: 10.3934/cpaa.2006.5.447

[5]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[6]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[7]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[8]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[9]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[10]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[13]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[14]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[15]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[16]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[17]

Qiang Du, Jiang Yang, Zhi Zhou. Analysis of a nonlocal-in-time parabolic equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 339-368. doi: 10.3934/dcdsb.2017016

[18]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[19]

Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations & Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020

[20]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]