Advanced Search
Article Contents
Article Contents

Stability of the determination of a time-dependent coefficient in parabolic equations

Abstract Related Papers Cited by
  • We establish a Lipschitz stability estimate for the inverse problem consisting in the determination of the coefficient $\sigma(t)$, appearing in a Dirichlet initial-boundary value problem for the parabolic equation $\partial_tu-\Delta_x u+\sigma(t)f(x)u=0$, from Neumann boundary data. We extend this result to the same inverse problem when the previous linear parabolic equation is changed to the semi-linear parabolic equation $\partial_tu-\Delta_x u=F(x,t,\sigma(t),u(x,t))$.
    Mathematics Subject Classification: 35R30.


    \begin{equation} \\ \end{equation}
  • [1]

    J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.


    J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation, in "Inverse Problems" (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., 77, Birkhäuser, Basel, (1986), 133-137.


    J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations, Inverse Problems, 4 (1988), 35-45.


    J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl., 145 (1990), 470-484.doi: 10.1016/0022-247X(90)90414-B.


    M. Choulli, An abstract inverse problem, J. Appl. Math. Stoc. Ana., 4 (1991), 117-128.doi: 10.1155/S1048953391000084.


    M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.doi: 10.1016/0022-247X(91)90299-F.


    M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques," Mathématiques & Applications (Berlin), 65, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-642-02460-3.


    M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462.doi: 10.3934/cpaa.2006.5.447.


    M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients, J. Inv. Ill-Posed Problems, 14 (2006), 355-373.doi: 10.1163/156939406777570996.


    M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation, Arch. Math. (Basel), 97 (2011), 587-597.doi: 10.1007/s00013-011-0329-z.


    G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Commun. PDE, 32 (2007), 1737-1758.doi: 10.1080/03605300701382340.


    G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18 pp.doi: 10.1063/1.2841329.


    S. Itô, "Diffusion Equations," Transaction of Mathematical Monographs, 114, AMS, Providence, RI, 1992.


    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Math. Soc., Providence, RI, 1968.


    A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation," Proc. of the Meeting, Volerra Integrodifferential Equations in Banach Spaces, Trento, Pitman, London, 1987.


    A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, J. Nonlinear Anal., 12 (1988), 1317-1335.doi: 10.1016/0362-546X(88)90080-6.


    A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I, Translations from Diff. Uravn., 21 (1985), 119-129, 182.


    A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II, Translations from Diff. Uravn., 21 (1985), 694-701, 735.


    R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem," Ph.D. Thesis, University of California, Los Angeles, 2010.

  • 加载中

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint